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Введение

Математическое моделирование актуальных прикладных
проблем науки и техники во многих интересных приложениях
приводит к задачам, имеющим решения типа бегущей волны.
Примерами подобных задач являются, например,
начально-краевые задачи для уравнений: Баклея-Леверетта,
Колмогорова-Петровского-Пискунова-Фишера, квазилинейного
параболического уравнения и др.
Бегущие волны являются фундаментальными решениями
различных типов уравнений в частных производных, в том
числе тех, которые управляют теплопроводностью. В своей
работе Самарский А. А. и Соболь И. М.1 представляли
комплексное исследование численных решений квазилинейного
уравнения теплопроводности, в том числе, и внимание
решениям типа "бегущей волны".

1Самарский А. А., Соболь И. М. Примеры численного расчета
температурных волн //Журнал вычислительной математики и
математической физики. – 1963. – Т. 3. – №. 4. – С. 702-719.



В работе Четверушкина Б.Н., Ольховской О.Г. и Цыгвинцева
И.П.2 рассматривают новый подход в численном решении
задач высокотемпературной газовой динамики в
высокопроизводительных вычислительных системах. Одной из
важных областей использования описанного подхода является
высокотемпературная газовая динамика с лучистой
теплопроводностью.
В докладе представлены результаты численной реализации
дискретных аналогов задач с решениями типа "бегущих волн".
Приведенные численные результаты показали достаточно
высокую вычислительную эффективность построенных
вычислительных алгоритмов.

Работа выполнена при финансовой поддержке грантов РНФ
23-71-30013 и 23-71-30037.

2Chetverushkin B. N., Olkhovskaya O. G., Il’ya P. T. Numerical solution of
high-temperature gas dynamics problems on high-performance computing
systems //Journal of Computational and Applied Mathematics. – 2021. – Т.
390. – С. 113374.



Уравнение Баклея-Леверетта

Уравнение Баклея-Леверетта используется для описания
вытеснения водой нефти:

m
∂s

∂t
+ Q

∂φ(s)

∂x
= 0, x ∈ (0, l ], t ∈ (0, t], (1)

где m – пористость среды, коэффициент Q – суммарная
скорость потока воды и нефти, φ(s) – функция
Баклея-Леверетта, которая определяется по следующей
формуле:

φ(s) =
f1(s)

f1(s) + µ0f2(s)
µ0 =

µ1

µ2
. (2)

Здесь f1(s) и µ2 – относительные фазовые проницаемости
нефти и воды.



Для вычисления относительных фазовых проницаемостей
используем эмпирические формулы академика Л.С.Лейбензона:

f1(s) =

{
0, 0 ≤ s ≤ 0.2,
( s−0.2

0.8 )3.5, 0.2 < s ≤ 1.
(3)

f2(s) =

{
(1 + 2.4s)

(0.85−s
0.85

)2.8
, 0 ≤ s < s = 0.85,

0, 0.85 ≤ s ≤ 1.
(4)



На рисунке слева представлены графики функции
Баклея-Леверетта φ(s) для различных значений
µ0 = µ2/µ1 = 0.01, 0.1, 0.5, 1.
А справа представлены графики производной функции
Баклея-Леверетта по водонасыщенности φ′(s).



Величину водонасыщенности s∗ на фронте ударной волны
следует определить из условия Ренкина-Гюгонио:

φ′(s∗) =
φ(s∗)− φ(s0)

s∗ − s0

На рисунке представлены графики фронтовой от насыщенности
s∗ параметра µ0 при различных значениях величины начальной
водонасыщенности s0 = 0.2, 0.3.

[



Приведем численные примеры на модельной задаче:

Пример 1. Рассмотрим численную реализацию с помощью
"явный уголок". Поставленную задачу аппроксимируем с
помощью явной схемы уголок, при этом выбираем величину
временного шага вычисляем по формуле

τ =
mh ∗ l
Qφ′(s∗)

:



sk+1
i − ski

τ
+

φk
i − φk

i−1

h
= 0, i = 1, 2, . . . , n,

k = 0, 1, . . . ,K − 1,

sk+1
0 = 0.85, k = 0, 1, . . . ,K − 1,

s0
i = s0, i = 0, 1, . . . , n.

(5)



Численная реализация при следующих данных:

l = 1, n = 200, J = 200, sk+1
0 = 0.85



Численная реализация при следующих данных:

l = 1, n = 200, J = 200, sk+1
0 = 0.85



Численная реализация при следующих данных:

l = 1, n = 200, J = 200, sk+1
0 = 0.85



Численная реализация при следующих данных:

l = 1, n = 200, J = 200, sk+1
0 = 0.85



Дивергентная разностная схема

Пример 2. В данной задаче будем рассматривать
аппроксимацию с помощью дивергентной разностной схемы.
Граничное условия берем из сеточного закона объема
закачанной в коллектор воды за временной промежуток τ .

sk+1
i − ski

τ
+

φk
i − φk

i−1

h
= 0, i = 1, 2, . . . , n,

k = 0, 1, . . . ,K − 1,

sk+1
0 = s, k = 0, 1, . . . ,K − 1,

s0
i = s0, , s0

0 = 0.2, i = 0, 1, . . . , n.

(6)

s =

{
s0 +

2τ
h (1 − φ0), если s0 +

2τ
h (1 − φ0) < 0.85,

0.85, в противном случае



Численная реализация при следующих данных при
водонасыщенности s0 = 0.2:

l = 1, n = 200, J = 200, sk+1
0 = s



Численная реализация при следующих данных:

l = 1, n = 200, J = 200



Численная реализация при следующих данных при
водонасыщенности s0 = 0.2:

l = 1, n = 200, J = 200, sk+1
0 = s



Численная реализация при следующих данных:

l = 1, n = 200, J = 200



Численное решение задачи
Колмогорова-Петровского-Пискунова (Фишера)

Пусть в области ΩT = [−l , l ]× [0,T ] требуется определить
функцию u(x , t).

∂u

∂t
= D

∂2u

∂x2 + au − bu2, x ∈ (−l , l), t ∈ (0,T ], (7)

где t – время, x – пространственная переменная, D –
коэффициент диффузии, a = a(x , t) – коэффициент прироста
бактерий, b(x , t) – коэффициент конкурентных потерь,
называемый функцией влияния, u(x , t) – искомая кинетическая
переменная.
Задаем однородные граничные условия Дирихле:

u(−l , t) = u(l , t) = 0, t ∈ (0,T ], (8)

Начальное условие:

u(x , 0) = u0(x) x ∈ Ω. (9)



Разностная схема

В начально-краевой задаче (7) – (9) поставим в соответствие
неявную разностную схему:

uji − uj−1
i

τ
= D

(
uji−1 − 2uji + uji+1

h2 +

)
+ auji − b(uji )

2,

i = 1, 2, . . . ,N − 1, j = 1, 2, . . . ,M,

uj0 = ujN = 0, j = 1, 2, . . . ,M,

u0
i = u0(xi ), i = 0, 1, . . . ,N.

(10)



Приведем примеры численной реализации неявной
разностной схемы:

Пример 1. Зададим начальное условие:

u(x , 0) = u0(x) = exp(−100(x − 0.5l)2), x ∈ [−l , l ], (11)

Задаем граничные условия Дирихле:

u(−l , t) = u(l , t) = 0, t ∈ (0,T ], (12)



Приведеем численные результаты в разные моменты
времени при значениях:

n = 200,m = 160,D = 0.001, a = 1, b = 1, L = 10



Численный результат u(x , t) в виде трехмерного
графика(слева) и и профиль численного решения (справа) при:

n = 200,m = 160,D = 0.001, a = 1, b = 1, L = 10



Пример 2:

Зададим следующее начальное условие:

u(x , 0) = u0(x) =


0, если x < 0.4l или x > 0.6l ,
1, если 0.4l ≤ x < 0.5l ,
0.5, если 0.5l ≤ x ≤ 0.6l .

(13)

Задаем граничные условия Дирихле:

u(−l , t) = u(l , t) = 0, t ∈ (0,T ], (14)



Результаты численной реализации схемы в разные
моменты времени при значениях:

n = 300,m = 180,D = 0.001, a = 1, b = 1, L = 10



Численный пример - численное решение uji в виде трехмерного
графика(слева) и профиль решения (справа) при:
n = 300,m = 180,D = 0.001, a = 1, b = 1, L = 10



Нелокальная задача КПП

Пусть в области ΩT = [−l , l ]× [0,T ] требуется определить
функцию u(x , t) – решение модельной нелокальной
одномерного задачи Колмогорова - Петровского - Пискунова
(Фишера)

∂u

∂t
=

∂

∂x

(
D
∂u

∂x

)
+au−ku

l∫
−l

b(x , y)u(y , t)dy , x ∈ (−l , l), 0 < t ⩽ T ,

Задаются однородные граничные условия Дирихле и начальное
условие

u(0, t) = 0, u(l , t) = 0, 0 < t ⩽ T ,

u(x , 0) = u0(x), x ∈ Ω.



Построим неявную разностную схему для данной нелокальной
задачи, в ней интегральную часть аппроксимируем явно:

uji − uj−1
i

τ
= D

(
uji−1 − 2uji + uji+1

h2

)
+

+auji − cuji
∑n

m=0 bimu
j−1
m h,

i = 1, 2, . . . , n − 1, j = 1, 2, . . . ,K ,

uj0 = ujn = 0, j = 1, 2, . . . ,K ,

u0
i = u0(xi ), i = 0, 1, . . . , n.



Пример 3.

Рассмотрим следующее начальное условие:

u0(x) = e−πx2
, x ∈ [−l , l ],

b(x , y) =

{
c для |x − y | ≤ z ,
0 иначе,

Задаем однородные граничные условия Дирихле:

u(−l , t) = u(l , t) = 0, t ∈ (0,T ].



При численной реализации будем считать,что параметры
a, c=1. Численные результаты при значениях:
n = 300,m = 300, L = 70, z = 1.5



Пример 4.

Рассмотрим следующее начальное условие c тремя
источниками:

u0(x) = 0.5e−π(x−y)2 + e−πx2
+ 0.1e−π(x+y)2 , x ∈ [−l , l ],

b(x , y) =

{
c для |x − y | ≤ z ,
0 иначе,

Задаем однородные граничные условия Дирихле:

u(−l , t) = u(l , t) = 0, t ∈ (0,T ].



При численной реализации будем считать,что параметры
a, c=1. Приведем результаты численного решения при:
n = 200,m = 200, z = 2.3



Квазилинейное параболическое уравнение

Рассмотрим уравнение:

∂u

∂t
= K

∂

∂x

(
uσ

∂u

∂x

)
(15)

Уравнение (15) имеет точное решение:

u(x , t) =

{
σσ−1(t − x)

1
σ , x ⩽ t,

0, x > t.
(16)



Разностная схема

Поставим в соответствие неявную разностную схему уравнению
(15) с соответствующими точному решению (16) граничными и
начальному и граничным условиям:

y s+1
i − y si

τ
=

K

h2

((
y si+1 + y si

2

)σ

(y s+1
i+1 − y s+1

i )−

(
y si + y si−1

2

)σ

(y s+1
i − y s+1

i−1 )

)
, i = 1, 2, . . . , n − 1; s = 1, 2, . . . ,K ;

yn = 0,

y0
i = u(0, t), t ∈ ωτ .

(17)



При численной реализации будем считать,что параметр K=1.
На рисунке представлены графики численных результатов x и
точных решений T в разные моменты времени при σ = 6.5. На
каждом временном слое требуется примерно в среднем по 3
итерации.



При численной реализации будем считать,что параметр K=1.
Численный пример - численное решение y в виде трехмерного
графика(слева) и профиль решения (справа) при σ = 6.5.



На рисунке представлены графики численных результатов x и
точного решения T в разные моменты времени при σ = 3.5.



При численной реализации будем считать,что параметр K=1.
Численный пример - численное решение y в виде трехмерного
графика(слева) и профиль решения (справа) при σ = 3.5.



На рисунке представлены графики численных результатов Y и
точных решений U в разные моменты времени при σ = 1.



При численной реализации будем считать,что параметр K=1.
Численный пример - численное решение y в виде трехмерного
графика(слева) и профиль решения (справа) при σ = 1.



На рисунке представлены графики численных результатов Y и
точных решений U в разные моменты времени при σ = 0.5.



При численной реализации будем считать,что параметр K=1.
Численный пример - численное решение y в виде трехмерного
графика(слева) и профиль решения (справа) при σ = 0.5.



7. Заключение
В докладе представлены результаты численного моделирования
трех процессов, имеющих решения типа "бегущих волн".
Проведенные вычислительные эксперименты на модельных
задачах показали эффективность представленного подхода:

1. Численное решение задачи Баклея – Леверетта с помощью
схемы "явный уголок" c определением величин s∗ и τ
продемонстрировало отличные результаты.

2. Численное решение задачи Колмогорова-Петровского-
Пискунова-Фишера с помощью неявной разностной схемы
в сочетании с итерационным методом Ньютона также дает
очень хорошие результаты.

3. Численная реализация методом простых итераций неявной
разностной схемы для квазилинейного параболического
уравнения с решением типа бегущей волны при
подходящем выборе временного шага показывает высокую
точность.
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