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1. Введение

Теоретическое исследование условной корректности и разработка эф-
фективных численных методов решения обратных задач являются весь-
ма актуальными в связи с широким использованием их в качестве мате-
матических моделей различных природных явлений и технологических
процессов.
В настоящее время в нашей стране школами А.Н. Тихонова, М.М. Лав-
рентьева, В.Г. Романова, В.К. Иванова и их учениками велась и ведется
большая работа по теоретическому исследованию и разработке эффек-
тивных численных методов решения обратных задач. Их ученики теперь
работают во многих ведущих математических центрах мира и радуют
нас своими первоклассными результатами мирового уровня.
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Исследование обратных задач для дифференциальных уравнений с дроб-
ными производными находится в процессе бурного развития, как в тео-
ретическом плане, так и в их приложениях и превратился в инструмент
математического моделирования сложнейших динамических процессов.
Прикладное значение в этом процессе коэффициентных обратных задач
весьма значительно, и по сути они представляют собой обширный класс
обратных задач.
В докладе представлены численные методы решения обратной задачи
идентификации правой части линейного нелокального уравнения суб-
диффузии. Для восстановления стационарного множителя правой ча-
сти предложена неявная разностная схема, в качестве условия переопре-
деления использовано значения решения в финальный момент време-
ни. Также представлена неявная разностная схема решения обратной
задачи идентификации неизвестного нестационарного множителя пра-
вой части линейного нелокального уравнения субдиффузии. В качестве
условия переопределения рассмотрены случаи: задания значения реше-
ния в заданной точке x̄ ∈ (0, l), t ∈ [0,T ], задания значения взвешен-
ного интеграла по области определения пространственной области.
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Эффективным подходом решения обратных задач являются итераци-
онные методы академика А.А.Самарского и его учеников1, предложено
для численной реализации дискретного аналога ретроспективной об-
ратной задачи теплопроводности. Ими и их учениками выполнены ряд
работ, в которых в первую очередь, строится конечно-разностный ана-
лог задачи, а потом для численной реализации полученной системы
линейных алгебраических уравнений применяется итерационные мето-
ды вариационного типа. На каждой итерации решается прямая зада-
ча теплопроводности с последующим уточнением начального условия.
Метод хорошо работает и при идентификации начального условия для
уравнения субдиффузии. Он хорошо работает и для определения плот-
ности стационарного источника в уравнении теплопроводности. В этих
задачах также сначала строится дискретный аналог рассматриваемой
обратной задачи, затем численная реализация полученной системы ли-
нейных алгебраических уравнений осуществляется итерационным мето-
дом сопряженных градиентов.

1A.A. Самарский, П.Н. Вабищевич, В.И. Васильев. Итерационное решение
рертоспективной обратной задачи теплопроводности // Матем. моделирование,
9:5, 1997, 119–127.
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С профессором П.Н. Вабищевичем в работе 2 для численного реше-
ния обратной задачи с неизвестными коэффициентом, зависящим от
времени, предложена специальная декомпозиция решения, при которой
переход на новый временной слой осуществляется путем решения двух
стандартных сеточных эллиптических задач. Этот же подход решения
находит успешное применение для других коэффициентых обратных за-
дач и для граничной обратной задачи.

2П.Н. Вабищевич, В.И. Васильев. Вычислительная идентификация младшего
коэффициента параболического уравнения // Доклады академии наук. – 2014. – Т.
455, № 3. – С. 258-260.
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Для численного восстановления стационарной правой части уравнения
субдиффузии сначала строится дискретный аналог поставленной обрат-
ной начально-краевой задачи с неоднородными граничными условиями
Дирихле. Полученная система алгебраических уравнений численно ре-
ализуется методом сопряженных градиентов. Приведены примеры вос-
становления стационарной правой части для модельных задач. Прове-
денные численные эксперименты показали высокую точность.
Для численного восстановления множителя, зависящей от времени, в
правой части уравнения субдиффузии на каждой временном слое реша-
ются две вспомогательные сеточные эллиптические задачи, а значение
множителя определяется из декомпозиции решения вспомогательными
функциями и заданного условия переопределения. Приведены приме-
ры восстановления временного множителя модельных задач с точными
решениями. Проведенные численные эксперименты показали высокую
точность восстановления неизвестных величин.
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2. Постановка прямой задачи

Пусть в области Ω =
∏d

i=1[0, li ], x = (x1, x2, . . . , xd), требуется опреде-
лить функцию u(x , t) из условий

C
0D

α
t u =

d∑
m=1

∂

∂xm

(
km(x , t)

∂u

∂xm

)
+ p(t)f (x), m ∈ Ω, 0 6 t < T ,

решение уравнения удовлетворяет начальному условию

u(x , 0) = u0(x), x ∈ Ω,

неоднородному граничному условию Дирихле на границах области

u(x , t) = µ(x , t), x ∈ ∂Ω, 0 6 t < T

Следует отметить, что для корректности постановки прямой начально-
краевой задачи необходимо выполнение условия согласования началь-
ного и граничного условий.

Численное решение обратных задач 8/ 39



Введем в области ΩT = Ω × [0,T ] прямоугольную равномерную про-
странственно-временную сетку

ω = ωh × ωτ ,

где

ωh =
d∏

m=1

{xm | xmi = ihm, i = 0, 1, . . . ,Mm; hm = lm/Mm},

ωτ = {tj | tj = jτ, j = 0, 1, . . . ,N; τ = T/M}.

∂ωh — множество граничных узлов
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Для аппроксимации дробной производной Капуто используем дискре-
тизацию, предложенную в работе3, имеющую порядок аппроксимации
0(τ2−α)

C
0D

α
tj
u(x , t) =

1
Γ(1− α)

tj∫
0

∂u(x , s)

∂s
(tj − s)−αds ≈

≈ 1
Γ(1− α)

j∑
k=1

u(x , tk)− u(x , tk−1)

τ

tk∫
tk−1

ds

(tj − s)α
+ O(τ2−α) =

=
τ−α

Γ(2− α)

j∑
k=1

vk

(
u(x , tj−k+1)− u(x , tj−k)

)
+ O(τ2−α)

где
v1 = 1, vk = k1−α − (k − 1)1−α, k = 2, 3, . . . ,N.

3P. Zhuang and F. Liu, Implicit Difference Approximation for the Time Fractional
Diffusion Equation J. Appl. Math. Computing. Vol. 22, N. 3, (2006) pages 87–99
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Введем гильбертово пространство сеточных функций y , v ∈ H = L2 (ω),
в котором скалярное произведение и норма определены следующим об-
разом:

(y ,w) =
∑
x∈ω

y(x)v(x)h, ‖y‖ ≡
√

(y , y).

В предположении достаточной гладкости коэффициента km(x , t) в об-
ласти ω сеточный аналог эллиптического оператора L записывается в
виде:

A(t)y(t) = −
d∑

m=1

(k(x , t)yx̄m)xm

(k(x , t)yx̄m)xm =
1
hm

(
km,i+1yxm,i+1)− km,iyxm,i

)
i = 1, 2, . . . ,Mk − 1.

km,i (x , t) = k(. . . , xm,i + 0.5h, . . . , t)

В пространстве сеточных функций H оператор A является самосопря-
женным и положительно определенным A = A∗ > 0.
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Следует отметить,что при аппроксимации дробной производной Капуто
по времени используются значения решения в точке x ∈ ω во всех
предыдущих временных слоях.
Для численного решения рассматриваемой начальной краевой задачи
для нелокального уравнения субдиффузии используем неявную раз-
ностную схему

y j + rαA
jy j =

j−1∑
k=0

cj−ky
k + rαp

j f (x), x ∈ ω, j = 1, 2, . . . ,N,

y j(x = µ(x , t j), x ∈ ∂ωh, j = 0, 1, . . . ,N,

y0(x) = u0(x), x ∈ ω.

Здесь использованы обозначения

rα = Γ(2− α)τα, ck = vk−1 − vk , k = 1, 2, . . . , j − 1, cj = vj .
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Отметим, что корректность постановки более общих прямых задач Ко-
ши для эволюционного уравнения первого порядка с памятью в конеч-
номерном Гильбертовом пространстве, когда интегральный член связан
с производной решения по времени установлена в цикле работ П.Н. Ва-
бищевича, например в работе4. Основные проблемы приближенного ре-
шения таких нелокальных задач связаны с необходимостью работы с
приближенным решением для всех предыдущих моментов времени.

4Vabishchevich P.N. Approximate solution of the Cauchy problem for a first-order
integrodifferential equation with solution derivative memory // Journal of
Computational and Applied Mathematics, 2023, 422, 114887
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3.1 Численное восстановление пространственного
множителя правой части уравнения субдиффузии

C
0D

α
t u =

d∑
m=1

∂

∂xm

(
k(x , t)

∂u

∂xm

)
+ p(t)f (x), x ∈ Ω, 0 6 t < T ,

При решении обратной задачи определения стационарной правой части
уравнения субдиффузии используем дискретный аналог условия пере-
определения, который имеет вид

u(x ,T ) = φ(x), x ∈ ωh.

При численной реализации дискретного аналога обратной задачи с усло-
вием переопределенности ля идентификации правой функции источни-
ка f (x) воспользуемся итерационным методом сопряженных градиен-
тов. На каждой итерации решается дискретный аналог корректной пря-
мой задачи с последующим уточнением стационарной правой части.
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Схема реализации метода сопряженных градиентов следующая:
1. Задаем s = 0, где s – номер итерации.
1.1. Начальное приближение искомой функции f0(x), x ∈ ωh.
1.2. Найдем решение прямой задачи при заданном начальном условии
и принятом f0(x), x ∈ ωh.

y js + rαA
jy js =

j−1∑
k=0

cj−ky
k
s + rαp

j fs(x), x ∈ ωh, j = 1, 2, . . . ,N,

y js (x) = µ(x , tj), x ∈ ∂ωh, j = 0, 1, . . . ,N,

y0
s (x) = u0(x), x ∈ ω.

1.3. Вычислить начальную невязку rs(x) = yNs (x) − φ(x), x ∈ ωh

и задаем начальное приближение вспомогательной сеточной функции
q0(x) = r0(x), x ∈ ωh.
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2. Увеличиваем номер итерации s = s + 1.
2.1. Решаем дискретный аналог прямой задачи для вспомогательного
параболического уравнения,

z js + rαA
jz js =

j−1∑
k=0

cj−kz
k
s + rαp

jqs(x), x ∈ ωh, j = 1, 2, . . . ,N,

z js(x) = 0, x ∈ ∂ωh, j = 0, 1, . . . ,N,

z0
s (x) = 0, x ∈ ωh.

2.2. Вычисляем значение итерационного параметра αs = (rs , rs)/(zNs , qs).
3. Вычислим следующее приближение искомой правой части и невязки
по формулам fs+1 = fs + αsqs , rs+1 = rs − αsz

N
s , x ∈ ωh.

4. Найдем значение второго параметра итерации и вычислим вспомо-
гательный вектор, βs = (rs+1, rs+1)/(rs , rs), qs+1 = rs + βsqs , x ∈ ωh.
5. Продолжаем итерационный процесс до тех пор, пока не будет вы-
полнен критерий прекращения итераций rs/φ < ε, в противном случае
возвращаемся к шагу 2, продолжая итерационный процесс.
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Поскольку на практике решения прикладных обратных задач, имеем
дело с результатами измерения значения дополнительного условия, то
вследствие погрешности измерительных приборов (сенсоров), условие
переопределения задается с некоторой погрешностью. Коэффициентная
обратная задача теплопроводности не исключение, поэтому введем воз-
мущение задаваемого значения решения в финальный момент времени
с помощью генератора случайных чисел:

φ(x) = φ(x) + δrand(−1, 1),

где rand(−1, 1) – генератор случайных чисел, равномерно распределен-
ных в интервале (−1, 1). Также для получения более гладкого решения
проведем численные расчеты с использованием к возмущенному фи-
нальному условию сглаживающего фильтра Савицкого-Голея5.

5ABRAHAM SAVITZKY and MARCEL J. E. GOLAY. Smoothing and Differentiation
of Data by Simplified Least Squares Procedures. Analytical Chemistry. (1964). 36 (8):
1627–39. Bibcode:1964AnaCh..36.1627S. doi:10.1021/ac60214a047
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3.2 Результаты вычислительного эксперимента

Рассмотрим задание правой части на модельных задачах для уравнения
субдиффузии при c(x , t) ≡ 1, k(x , t) ≡ 1:

∂αu

∂tα
=
∂2u

∂x2 + f (x), 0 < x < l , 0 < t 6 T ,

Модельная задача 1. Начальное и граничные условия задаются следу-
ющим образом

u(x , 0) = 0, 0 6 x 6 l ,

µ1(t) = 0, µ2(t) = 0, 0 6 t < T ,

f (x) = e−(x−l/2)2 , 0 6 x 6 l .

Финальное условие переопределения находится путем решения прямой
задачи с заданной правой частью на мелкой сетке.

Численное решение обратных задач 18/ 39



На рис.1 представлены результаты численного решения модельной за-
дачи 1 при L = 4, T = 1 на двух пространственно-временных сетках с
n = 200, J = 400 – грубая сетка и n = 400, J = 800.

Рис 1: Финальное условие (слева) и ошибка определения финального
условия (справа) на двух сетках.
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Расчитаны ошибки восстановления правой части в относительной L2-
норме и L∞-норме при различных порядках α = 0.1, 0.3, 0.5, 0.7, 0.9:

Рис 2: Ошибки в норме L2 (слева) и L∞ (справа) на каждой итерации при
различных порядках α.
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Восстановление правой части при α = 0.5, δ = 0.01, K = 3.

Рис 3: Графики восстановленной гладкой правой части при наличии
«шума» в финальном условии, и при его сглаживании.
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Восстановление правой части при α = 0.5, δ = 0.05, K = 1.

Рис 4: Графики восстановленной гладкой правой части при наличии
«шума» в финальном условии, и при его сглаживании.
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Решение двумерной задачи с помощью явной схемы при L = 10, N = 64,
M = 2000, τ = 0.2h2, α = 0.7, K = 3

Рис 5: Графики точной правой части (слева), решения u в финальный
момент времени (по середине), восстановленной правой части (справа).
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4.1 Численное восстановление зависящего от времени
множителя правой части уравнения субдиффузии

Рассмотрим обратную задачу, когда в уравнении субдиффузии функция
p(t) неизвестна. Дополнительная информация рассматриваемой обрат-
ной начально-краевой задачи обычно задается в некоторой внутренней
точке x̄ ∈ Ω:

u(x̄ , t) = ϕ(t), 0 < t ≤ T .

В случае нелокального наблюдения в качестве условия переопределения
может выступить интеграл∫

Ω
ξ(x)u(x , t)dx = ϕ(t), 0 < t ≤ T .

Условие переопределения получается с весовой функцией в виде ξ(x) =
δ(x − x̄), где δ(s) – дельта-функция Дирака.

Предположим, что поставленная обратная задача по определению пары
{u(x , t), p(t)} является корректной.
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Дискретный аналог условия переопределения имеет вид

y jn∗ = ϕ(tj), j = 0, 1, . . . ,M,

Для определения пары неизвестных функций u(x , t) и p(t) привлекается
специальная декомпозиция решения на новом временном слое следую-
щего вида:

y j(x) = v j(x) + pjw j(x), x ∈ ωh.

Для вспомогательной функции v ставится сеточная краевая задача с
граничным и начальным условием таким же как для y .

v j + rαA
jv j =

j−1∑
k=0

cj−kv
k , x ∈ ωh, j = 1, 2, . . . ,N,

v j(x) = µ(x , t j), x ∈ ∂ωh, j = 0, 1, . . . ,N,

v0(x) = u0(x), x ∈ ωh.
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Для вспомогательной функции w ставится сеточная краевая задача с
однородным граничным условием и с однородным начальным условием.

w j + rαA
jv j = f (x), x ∈ ωh, j = 1, 2, . . . ,N,

w j(x) = 0, x ∈ ∂ωh, j = 0, 1, . . . ,N,

w0(x) = 0, x ∈ ωh.

С учетом того, что для v используется граничное условие искомой за-
дачи, для w — однородное граничное условие первого рода, при деком-
позиции начально-краевая задача выполняется при любом значении pj .
Из дискретного аналога условия переопределения получаем

pj =
ϕj − v jn∗

w j
n∗

.

Решение y(x , tj) на новом временном слое находится излинейной фор-
мы, представленной выше.
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В случае интегрального условия переопределения имеем

pj =
ϕj −

∑
i∈I ξiv

j
i∑

i∈I ξiw
j
i

, при условии
∑
i∈I

ξiw
j
i 6= 0,

где под I обозначен набор индексов, соответствующих ненулевым ве-
сам.

Условие неотрицательности знаменателя при определении значения pj

обеспечивается знакопостоянностью вспомогательной функции w j(x)
из принципа максимума для сеточного эллиптического уравнения. Для
этого можно наложить соответствующее ограничение на входную функ-
цию f (x , t), например f (x , t) ≥ 0.
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4.2 Вычислительный эксперимент по восстановлению
множителя правой части уравнения субдиффузии

Модельная задача 1
Рассмотрим начально-краевую задачу в единичном интервале, l = 1,
k = 1, q = 0

∂αu

∂tα
− ∂2u

∂x2 = p(t) sin(πx), 0 < x < 1, 0 < t ≤ T ,

u(x , 0) = 0, 0 < x < 1,

u(0, t) = u(1, t) = 0, 0 < t ≤ T ,

Точное значение неизвестной функции p(t)

pe(t) =
Γ(3)

Γ(3− α)
t2−α

соответствует решению задачи

ue(x , t) = t2 sinπx .
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При фиксированном значении шага по пространству h = 1/400 иссле-
дуется сходимость ошибки аппроксимации при изменении шага по вре-
мени. Для этого рассматриваем следующие ошибки

εu2 =

(
M∑
i=0

(uNi − uNe,i )
2

)1/2

, εu∞ = max
i∈{0,M}

|uNi − uNe,i |,

εp2 =

 N∑
j=0

(pj − pje)2

1/2

, εp∞ = max
i∈{0,N}

|pj − pje |,
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Условие переопределения задается в точке x∗ = 0.5.
В таблице 1 приведены ошибки аппроксимации при различных значе-
ниях шага τ = T/N, T = 1.

Таблица 1: Ошибки аппроксимации.

α N εu2 εu∞ εp2 εp∞
0.1 10 3.322e-13 2.787e-14 1.786e-03 6.702e-04

20 6.766e-13 4.852e-14 7.725e-04 2.066e-04
40 4.868e-13 3.764e-14 3.334e-04 6.258e-05
80 6.413e-13 3.697e-14 1.501e-04 1.876e-05
160 4.553e-13 3.819e-14 8.006e-05 7.448e-06

0.5 10 5.768e-13 3.797e-14 2.579e-02 1.076e-02
20 6.051e-13 4.674e-14 1.363e-02 4.076e-03
40 8.162e-13 5.129e-14 7.080e-03 1.522e-03
80 4.284e-13 3.431e-14 3.641e-03 5.613e-04
160 2.413e-13 2.121e-14 1.867e-03 2.051e-04

0.9 10 2.012e-13 1.676e-14 1.365e-01 6.181e-02
20 4.828e-13 4.130e-14 9.264e-02 3.032e-02
40 9.002e-13 5.873e-14 6.204e-02 1.450e-02
80 1.929e-13 1.676e-14 4.125e-02 6.850e-03
160 1.918e-13 1.310e-14 2.734e-02 3.224e-03
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Модельная задача 2
Рассматривается начально-краевая задача в области Ω = [0, 1], k = 1,
q = 0, x∗ = 0.5:

∂αu

∂tα
− ∂2u

∂x2 = p(t)f (x , t)

u(0, t) = u(1, 0) = 0,

u(x , 0) = 0.

Пусть множители правой части равны

f (x , t) = et sin(πx)

pe(t) = e−t
5∑

i=0

(
t i+α

Γ(1 + i + α)
+ π2 t i+2α

Γ(1 + i + 2α)

)
Точное решение поставленной задачи имеет вид

u(x , t) =
5∑

i=0

t i+2α

Γ(1 + i + 2α)
sin(πx)
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Рис 6: Функция переопределения ϕ(t).
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Рис 7: Восстановленая функцию p (сверху) и относительная ошибка (снизу).
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Рис 8: Решение u в финальный момент времени T = 1 в точке x∗ (сверху) и
ошибка приближения (снизу).
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Рис 9: Вспомогательная функция v в разные моменты времени в точке x0.
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Рис 10: Вспомогательная функция w в финальный момент времени T = 1
(сверху) и в разные моменты времени в точке x∗ (снизу).
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5. Заключение

Для определения решения дискретного аналога ретроспективной обрат-
ной задачи теплопроводности с неоднородными граничными условиями
зависящими от времени предложено использовать итерационный ме-
тод сопряженных градиентов, в случае коэффициентной обратной за-
дачи теплопроводности, когда коэффициент зависит только от време-
ни, предлагается использовать специальное декомпозицию решения на
новом временном слое.
В работе представлена неявная разностная схема решения обратной за-
дачи идентификации правой части линейного нелокального уравнения
субдиффузии с неоднородными граничными условиями зависящими от
времени. В качестве условия переопределения задано значение решения
в финальный момент времени. Для определения решения поставленной
задачи сначала строится дискретный аналог поставленной задачи. Чис-
ленная реализация дискретного аналога рассматриваемой обратной за-
дачи теплопроводности использован итерационный метод сопряженных
градиентов.
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В данной работе также построили вычислительный алгоритм для иден-
тификации неизвестного множителя в правой части уравнения субдиф-
фузии, зависящего от времени. Алгоритм базируется в специальной де-
композиции дискретизированного решения на новом временном слое и
на решении двух сеточных эллиптических уравнений.
Результаты расчета на модельных задачах подтвердили высокую эф-
фективность предложенных методов.
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