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Introducton

Development of new spacecraft, moving at high altitudes, is closely connected with
the problems of their dynamic and thermal interaction with the surrounding gas.
In order to reduce required time and cost, it is worthwhile to investigate
aerodynamical characteristics using the approaches of computational physics.

At present, the main computational tools for such studies are based on the direct
simulation Monte Carlo (DSMC) approach, e.g. well known SMILE system
developed at ITAM [Kashkovsky et al., 2004, Ivanov et al., 2010].

An alternative to DSMC is the direct numerical solution of the Boltzmann kinetic
equation for the velocity distribution function. The potential benefits of kinetic
solvers include higher-order accuracy (typically at least 2nd order) and absence of
statistical noise in the results.

However, until recently the prohibitive computational cost of such methods did not
allow applications to flows with high free-stream Mach numbers and complex
geometries.

The present talk will concentrate on the development of methods and parallel code
to model hypersonic rarefied gas flows using the model kinetic equation of E.M.
Shakhov (so-called S-model).
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S-model in the dimensional form

State of the gas is described by the velocity distribution function f = f (t, x , ξ).

Macroscopic variables are defined as integrals with respect to molecular velocity:

n =

∫
fdξ, nu =

∫
ξfdξ,

3

2
mnRgT +

1

2
mnu2 =

1

2
m

∫
ξ2fdξ,

q =
1

2
m

∫
vv 2f dξ, v = ξ − u, ρ = mn, p = ρRgT .

Kinetic equation is written in the following form

∂

∂t
f + ξα

∂f

∂xα
=

p

µ
(f + − f ), f + = fM

[
1 +

4

5
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(
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)]
,
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exp (−c2), Si =
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∫
cic
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2RgT
, c2 = cβcβ .

Here Pr = 2/3 is Prandtl number, m – molecular mass, Rg - gas constant.

Boundary condition of the diffusive reflection with complete thermal
accommodation to the surface temperature Tw is given by

fw =
nw

(2πRgTw)3/2
exp

(
− ξ2

2RgTw

)
, nw =

√
2π

RgTw
Ni , Ni = −

∫
ξn<0

ξnfdξ.
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Transformation to non-dimensional variables

Introduce the following change of variables:

x ′ =
x
l∗
, n′ =

n

n∗
, p′ =

p

p∗
, T ′ =

T

T∗
,

u′ =
u
v∗
, ξ′ =

ξ

v∗
, q′ =

q
mn∗β3

∗
, f ′ =

f

n∗β3
∗
.

where p∗ = mn∗RgT∗ – pressure, β∗ =
√

2RgT∗ – most probable molecular speed.

Degree of gas rarefaction is defined by the so-called rarefaction parameter δ, which
is inversely proportional to the Knudsen number:

δ =
l∗p∗

µ(T∗)β∗
=

8

5
√
π

1

Kn
, Kn =

λ∗
l∗
.

Here λ∗ is the mean free path at reference conditions ∗.

In the rest of the presentation non-dimensional variables will be denoted by the
same symbols are dimensional ones.
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S-model in the non-dimensional form

The kinetic equation is re-written as

∂f

∂t
+ ξα

∂f

∂xα
= J, J = ν(f (S) − f ), ν =

nT

µ
δ,

δ =
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µ(T∗)
√

2RgT∗
, ν = Tω, f (S) = fM

(
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4

5
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2
)

)
,

fM =
n

(πT )3/2
exp (−c2), c =

v√
T
, v = ξ − u, S =

2q
nT 3/2

.

Macroscopic variables(
n, nu,

3

2
nT + nu2, q

)
=

∫ (
1, ξ, ξ2,

1

2
vv 2

)
fdξ, p = nT

Boundary condition of diffuse reflection:

f (x , ξ) = fw =
nw

(πTw)3/2
exp

(
− ξ2
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)
, ξn = (ξ, n) > 0,

nw = Ni/Nr , Ni = −
∫

ξn<0

ξnfdξ, Nr = +

∫
ξn>0

ξn
1

(πTw)3/2
exp

(
− ξ2

Tw

)
dξ.
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Conservative version of the discrete velocity method

The improper integrals in the velocity space are replaced by proper integrals over
some sufficiently large finite domain, e.g.

3

2
nT + nu2 =

∫
ξ2fdξ ≈

∫
0≤ξ≤ξR

ξ2fdξ,

∫
ξ>ξR

ξ2fdξ � 1

We introduce in the velocity domain (generally unstructured) mesh with Nξ cells.

Functions f , f (S) will be assigned to the centres of cells and interpreted as
time-dependent matrices with components

fj = f (t, x , ξj), f
(S)
j = f (S)(t, x , ξj), ξj = (ξj1, ξj2, ξj3), j = 1, . . .Nξ

Kinetic equation is re-written as a system of Nξ equations, written as a vector
conservation law

∂

∂t
f +

∂

∂xα
Fα = J , J = ν(f (S) − f ), α = 1, 2, 3

Here the components of ”advection” fluxes are given by Fjα = ξjαfj .

Vladimir Titarev (FRC CSC RAS) RGD modelling INM RAS 2018 6 / 23



General form of the semi-discrete method

Integration over the spatial cell Vi and fairly standard approximation of flux
integrals and the right hand side leads to the following

∂fi
∂t

= Ri = − 1

|Vi |
∑
l=1

Φli + Ji , Φli =

∫
Ali

(n1F1 + n2F2 + n3F3)) dS

The second order of spatial accuracy is achieved by computing numerical fluxes Φli

using an upwind TVD method on arbitrary mesh:

For the so-called boundary extrapolated value fli for face l of cell i :

fli = fi + f correction
li

For f correction
li we use either general 3D method or directional method.

The upwind flux function is written as follows:

Φli =
1

2
ξnli ◦

[
f − + f + − sign(ξnli ) ◦ (f + − f −)

]
|Ali |.

Rusanov-type solver is also possible.
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Calculation of macroscopic variables and time advance

The main idea in computing macroscopic data introduced in [Titarev, 2017]) is to
discretize directly approximation conditions of the S-model equation. The vector of
primitive variables W = (n, u1, u2, u3,T , q1, q2, q3)T is found from the following
system:

H(W ) =

Nξ∑
j=1


1
ξ
ξ2

vv 2


j

(f (S) − f )jωj +


0
0
0

2 Pr q

 = 0.

For time advance we use implicit Euler method in time:

∆fi
∆t

= Rn+1
i , ∆fi = f n+1

i − f n
i , → ∆fi

∆t
= Rn

i +

(
∂R
∂f

)
∆fi .

After all usual linearisations and manipulations of terms the solution of the
resulting huge system is constructed using an approximate LU-SGS factorization
proposed for Euler equations in
[Jameson and Yoon, 1987, Men’shov and Nakamura, 1995]

The resulting procedure is matrix-free and computationally very fast.

Details are omitted
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Organization of parallel computations

3D kinetic calculations require the use of very large meshes

Typical 6-dimensional mesh size is at the order of 109 nodes/cells

General idea is to use geometrical mesh decomposition in

physical space - traditional in CFD

velocity space - specific to model kinetic equations

in both spaces

Standard approach: use message passing (MPI) for parallel computations

for decomposition in physical space all ideas from general CFD apply

for velocity space decomposition each MPI rank performs calculations for its set (or
range) of velocity nodes + sums up integral sums for computing macroscopic data

in general, velocity decomposition method is much easier to implement, but may be
not applicable to the exact BKE

However, pure MPI has its limitations - it does not scale well on systems with too
many multi/many-core nodes, e.g. modern Xeon /Xeon Phi processors.
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Schematic of two-level parallel model

MPI rank 1: 
portion of 

velocity mesh 

MPI rank N: 
portion of 

velocity mesh 

Complete problem:  
6-dimensional mesh + time 

 
MPI ALLReduce 

 

OpenMP+ 
vectorization 
within node 

OpenMP+ 
vectorization  
within node 
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Software package “Nesvetay-3D”

“Nesvetay-3D” consists of

computing core - library to read mesh, establish connectivity, implement various
TVD reconstruction, single-block and multi-block output into Tecplot format

three-dimensional kinetic solver for BGK and Shakhov models, including
implicit/explicit solvers, macroparameter calculations, boundary conditions

spatial/velocity mesh preprocessor for parallel computation, including adaptive mesh
for hypersonic flows

20000 lines of Fortran 2003 code with elements of object-oriented programming.

Two-level OpenMP + MPI model of parallel computations is used on computers
with large core count per node.

Development tools are Microsoft Visual Studio and Intel Fortran Compiler v. 17.

“Nesvetay-3D” has been successfully run on the HPC systems of Cranfield
University, Lomonosov Moscow State University, MIPT, Joint Supercomputing
Center of RAS as well as SCC and Peter the Great Saint-Petersburg Polytechnic
University.

Current version is tested on up to 256 nodes (61440 hyperthreads)
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Velocity mesh construction for high-speed external flows

If we use integration of a Maxwellian function

f = n(2πT )−3/2exp(−(ξ − u)2/T )

as a guide for choosing the cell size and domain size, than we have

∆ξ ≤ (0.5 . . . 1)
√
T , |ξ| ≤ 3.5

√
Tsw ,

where Tsw is after shock temperature and is proportional to M2
∞.

Naive velocity mesh construction is not useful for calculations as Nξ ≈ M3
∞.

In the existing literature an octree-type velocity mesh is proposed, e.g.
[Arslanbekov et al., 2013, Baranger et al., 2014]

In the present work we advocate a much simpler approach to the creation of
non-uniform velocity mesh, suitable for external flows with M∞ � 1:

Near ξ = 0 and ξ = u∞ we use cubical subdomains with ∆ξ =
√
Tw , ∆ξ = 1,

respectively.
The rest of the domain is filled by tetrahedrons; their size grows up to ≈ 0.5

√
Tsw .

As a result, Nξ dependence on M∞ is close to linear.
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Verification study: flow over 6-inch cylinder

We compare our results with one of the leading DSMC code ”Monaco”, published
in Ph.D. thesis of Lofthouse, 2008.

We consider argon and free-stream Mach number M∞ = 25:

Dimensional velocity U∞ = 6585 m/s, temperature T∞ = 200K, Tw = 1500K,

Two values of free-stream density: ρ∞ = 1.127× 10−6 kg/m3 so that δ = 1.6 and
ρ∞ = 2.818× 10−5 kg/m3 so that δ = 40

Here δ is computed using cylinder radius R = .0762m.

Viscosity law µ = T 0.734.

We use the pressure, friction and heat transfer coefficients for comparison:

cp =
P · n − p∞

S2
∞

, cf =
P − (P · n)n

S2
∞

, ch = 2
M · n
S3
∞

,

where force acting on an unit surface with normal vector n and energy flux vector
given by

P = 2

∫
ξnξfdξ, M =

1

2

∫
ξξ2fdξ.
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Computational mesh

We use hexa mesh, with 115× 40 cells in x-y plane and 3 cells along z axis.

Velocity mesh consisted of 35720 cells.

(a) Spatial mesh (b) Velocity mesh
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Pressure cp, friction cf and heat transfer ch coeffs for argon

Results for δ = 1.6

(a) cp (b) cf (c) ch

Results for δ = 40

(a) cp (b) cf (c) ch
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Test problem: external supersonic flow

We consider external supersonic flow over the TsaGI re-entry vehicle model, which
consists of fuselage with blunted nose, wings, vertical keel and flap.

The total length of the model is 10 meters.

The aim is to compare S-model results with the DSMC data.
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Multi-block spatial mesh for kinetic equation

Half-domain with symmetry plane

159 blocks

436 thousand hexa cells with near-surface layer

Some cells of low quality so that an implicit solver is a must
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S-model vs DSMC: setup details

The calculations were carried out for the altitude H = 90 km, M∞ = 10 and
α = 25, Tw/T∞ = 5

The DSMC computations were performed using the SMILE software
system [Kashkovsky et al., 2004, Ivanov et al., 2010] by a team from ITAM SB
RAS: Ye.A. Bondar, P.V. Vashchenkov, A.A. Shevyrin

For the sake of comparison, air was treated as a monatomic gas, in other words,
internal degrees of freedom were ignored in both kinetic and DSMC calculations.

Below, results are studied in the non-dimensional variables, in which the
free-stream values of pressure and temperature are set as scales of pressure and
temperature. The characteristic length scale was set to 1 meter.

The rarefaction parameter is then δ∞ =
1 · p∞

µ(T∞)
√

2RgT∞
= 38.

The power-law intermolecular interaction µ = Tω is assumed, with ω = 0.734.

“Nesvetay-3D” calculations were run on PetaStream system at Peter the Great
Saint-Petersburg Polytechnic University
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Comparison of pressure coefficient cp

Left - SMILE right - “Nesvetay-3D”

Overall, we see the excellent agreement for pressure coefficient cp.
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Comparison of heat transfer coefficient ch

Left - SMILE right - “Nesvetay-3D”

The most difficult quantity to compute is the heat transfer coefficient cH .

As expected, the highest heating takes place on the blunt nose of the RSV.

The tail of the RSV is in the shadow of the fuselage hence the energy flux there is
much lower.

We in general observe satisfactory agreement, with the largest difference on the
nose around 10%.

Vladimir Titarev (FRC CSC RAS) RGD modelling INM RAS 2018 20 / 23



RSC ”PetaStream” family of supercomputers
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VKA flow on ”Polytechnic RSK PetaStream” of SPbPU

Flow regime: U∞ = 1500 m/s, 100 km altitude

Hexa va tetra-prism spatial mesh, up to 256 nodes (61140 hyperthreads)

Parallel efficiency around 73%

(a) Hexa, 6D mesh 9.5 bln cells (b) Tetra-prism, 6D mesh 8.7 bln cells
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Conclusions

We have developed a parallel software package to model three-dimensional
monatomic rarefied gas flows

A two-level model of parallel computations is implemented, which allows to run on
tens of thousands of cores/hyperthreads.

A comparison study shows good accuracy of kinetic model for high-Mach number
flows.

The capabilities are demonstrated by computing rarefied gas flow over 3D model
under angle of attack.

The work is supported by Russian Foundation for Basic Research project
18-08-00501

Computing resources are from Joint Super Computing Center of Russian Academy
of Sciences and Polytechnic Supercomputing Center of Saint-Petersburg
Polytechnic University.
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