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Introduction

Applied problems

Many applied mathematical models involve both sub-diffusion
(fractional in time) and super-diffusion (fractional in space)
operators (see, e.g., Podlubny [1998], Uchaikin [2013]).
Super-diffusion problems are treated as evolutionary problems with
a fractional power of an elliptic operator. For example, suppose
that in a bounded domain Ω on the set of functions
u(x) = 0, x ∈ ∂Ω, there is defined the operator A:
Au = −4u, x ∈ Ω. We seek the solution of the Cauchy problem
for the equation with the fractional power elliptic operator:

du

dt
+Aαu = f(t), 0 < α < 1, 0 < t ≤ T,

u(0) = u0,

for a given f(x, t), u0(x), x ∈ Ω using the notation f(t) = f(·, t).
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Introduction

Approximation in space

For approximation in space, we can apply finite volume or finite
element methods oriented to using arbitrary domains and irregular
computational grids (Knabner and Angermann [2003], Quarteroni
and Valli [1994]).
After this, we formulate the corresponding Cauchy problem with a
fractional power of a self-adjoint positive definite discrete elliptic
operator (see Bonito and Pasciak [2015], Szekeres and Izsák [2016])
— a fractional power of a symmetric positive definite matrix
(Higham [2008]).
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Introduction

Time-dependent problems

In the study of difference schemes for time-dependent problems of
BVP for PDE, the general theory of stability (well-posedness) for
operator-difference schemes (Samarskii [2001], Samarskii et al.
[2002]) is in common use.
At the present time, the exact (matching necessary and sufficient)
conditions for stability are obtained for a wide class of two- and
three-level difference schemes considered in finite-dimensional
Hilbert spaces.
We emphasize a constructive nature of the general theory of
stability for operator–difference schemes, where stability criteria are
formulated in the form of operator inequalities, which are easy to
verify. In particular, the backward Euler scheme and
Crank–Nicolson scheme are unconditionally stable for a
non-negative operator.
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Introduction

Problems with fractional powers of operators

Problems in numerical solving unsteady problems with fractional
powers of operators appear in using the simplest explicit
approximations in time. A practical implementation of such
approach requires the matrix function-vector multiplication. For
such problems, different approaches (see Higham [2008]) are
available.
Algorithms for solving systems of linear equations associated with
fractional elliptic equations that are based on Krylov subspace
methods with the Lanczos approximation are discussed, e.g., in Ilić
et al. [2008].
The simplest variant is associated with the explicit construction of
the solution using the eigenvalues and eigenfunctions of the elliptic
operator with diagonalization of the corresponding matrix
(Bueno-Orovio et al. [2014], Ilic et al. [2006]). Unfortunately, all
these approaches demonstrate very high computational complexity
for multidimensional problems.
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Introduction

Approximation of the original operator

There does exist a general approach to solve approximately
equations involving a fractional power of operators based on an
approximation of the original operator and then taking fractional
power of its discrete variant. Using the Dunford-Cauchy formula
the elliptic operator is represented as a contour integral in the
complex plane.
In Bonito and Pasciak [2015], there was presented a more promising
variant of using quadrature formulas with nodes on the real axis,
which are constructed on the basis of the corresponding integral
representation for the power operator (see Krasnoselskii et al.
[1976], Carracedo et al. [2001]).
In this case, the inverse operator of the problem has an additive
representation, where each term is an inverse of the original elliptic
operator. A similar rational approximation to the fractional
Laplacian operator is studied in Aceto and Novati [2017].
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Introduction

Our approach

We have proposed (Vabishchevich [2015]) a numerical algorithm to
solve an equation for fractional power elliptic operators that is
based on a transition to a pseudo–parabolic equation.
For an auxiliary Cauchy problem, the standard two-level schemes
are applied. The computational algorithm is simple for practical
use, robust, and applicable to solving a wide class of problems. A
small number of time steps is required to find a solution.
This computational algorithm for solving equations with fractional
power operators is promising for transient problems.
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Introduction

1D problems

As for one-dimensional problems for the space-fractional diffusion
equation, an analysis of stability and convergence for this equation
was conducted in Jin et al. [2014] using finite element
approximation in space.
A similar study for the Crank–Nicolson scheme was conducted
earlier in Tadjeran et al. [2006] using finite difference
approximations in space.
We highlight separately the works Huang et al. [2008], Sousa [2012],
Meerschaert and Tadjeran [2004], where numerical methods for
solving one–dimensional transient problems of convection and
space–fractional diffusion equation are considered.
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Introduction

Multidimensional problems

In Vabishchevich [2016], an unsteady problem is considered for a
space–fractional diffusion equation in a bounded domain. To
construct approximation in time, regularized two-level schemes are
used (see Vabishchevich [2014]).
The numerical implementation is based on solving the equation
with the fractional power of the elliptic operator using an auxiliary
Cauchy problem for a pseudo–parabolic equation (Vabishchevich
[2015]).
Some more general unsteady problems are considered in
Vabishchevich [2016].
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Introduction

This work

In the present work, standard two-level schemes are applied to solve
numerically a Cauchy problem for an evolutionary equation of first
order with a fractional power of the operator.
The numerical implementation is based on the rational
approximation of the operator at a new time-level.
When implementing the explicit scheme, the fractional power of the
operator is approximated on the basis of Gauss-Jacobi quadrature
formulas for the corresponding integral representation. In this case,
we have (see Frommer et al. [2014]) a Pade–type approximation of
the power function with a fractional exponent. A similar approach
is used when considering implicit schemes.
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Problem formulation

Elliptic operator

In a bounded polygonal domain Ω ⊂ Rd, d = 2, 3 with the Lipschitz
continuous boundary ∂Ω, we search the solution for the problem
with a fractional power of an elliptic operator. Define the elliptic
operator as

Au = −divk(x)gradu+ c(x)u

with coefficients 0 < k ≤ k(x) ≤ k, c(x) ≥ 0. The operator A is
defined on the set of functions u(x) that satisfy on the boundary
∂Ω the following conditions:

k(x)
∂u

∂n
+ g(x)u = 0, x ∈ ∂Ω,

where g(x) ≥ 0, x ∈ ∂Ω.
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Problem formulation

Spectral problem

In the Hilbert space H = L2(Ω), we define the scalar product and
norm in the standard way:

(u, v) =

∫
Ω
u(x)v(x)dx, ‖u‖ = (u, u)1/2.

For the spectral problem

Aϕk = λkϕk, x ∈ Ω,

k(x)
∂ϕk
∂n

+ g(x)ϕk = 0, x ∈ ∂Ω,

we have
λ1 ≤ λ2 ≤ ...,

and the eigenfunctions ϕk, ‖ϕk‖ = 1, k = 1, 2, ... form a basis in
L2(Ω). Therefore,

u =
∞∑
k=1

(u, ϕk)ϕk.

13/59 c© Petr N. Vabishchevich



Problem formulation

Fractional power of the operator

Let the operator A be defined in the following domain:

D(A) = {u | u(x) ∈ L2(Ω),

∞∑
k=0

|(u, ϕk)|2λk <∞}.

The operator A is self-adjoint and positive definite:

A = A∗ ≥ δI, δ > 0,

where I is the identity operator in H. For δ, we have δ = λ1. In
applications, the value of λ1 is unknown (the spectral problem must
be solved). Therefore, we assume that δ ≤ λ1. Let us assume for
the fractional power of the operator A:

Aαu =

∞∑
k=0

(u, ϕk)λ
α
kϕk, 0 < α < 1.

Mathematically complete definition of fractional powers of elliptic
operators is given in Carracedo et al. [2001], Yagi [2009].
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Problem formulation

Nonstationary problems

We seek the solution of a Cauchy problem for the evolutionary
first-order equation with the fractional power of the operator A.
The solution u(x, t) satisfies the equation

du

dt
+Aαu = f(t), 0 < t ≤ T,

and the initial condition
u(0) = u0.

The key issue in the study of computational algorithms for solving
the Cauchy problem is to establish the stability of the approximate
solution with respect to small perturbations of the initial data and
the right-hand side in various norms.
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Problem formulation

Discrete elliptic operator

To solve numerically the problem, we employ finite element
approximations in space (see, e.g., Brenner and Scott [2008],
Thomée [2006]). We define the bilinear form

a(u, v) =

∫
Ω

(k gradu grad v + c uv) dx +

∫
∂Ω
g uvdx.

We have
a(u, u) ≥ δ‖u‖2.

Define the subspace of finite elements V h ⊂ H1(Ω) and the discrete
elliptic operator A as

(Ay, v) = a(y, v), ∀ y, v ∈ V h.
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Problem formulation

Fractional power of the operator

For the spectral problem Aϕ̃k = λ̃k we have

λ̃1 ≤ λ̃2 ≤ ... ≤ λ̃Mh
, ‖ϕ̃k‖ = 1, k = 1, 2, ...,Mh.

The domain of definition for the operator A is

D(A) = {y | y ∈ V h,

Mh∑
k=0

|(y, ϕ̃k)|2λ̃k <∞}.

The operator A acts on the finite dimensional space V h and

A = A∗ ≥ δhI, δh > 0,

where δh ≤ λ1 ≤ λ̃1. For the fractional power of the operator A:

Aαy =

Mh∑
k=1

(y, ϕ̃k)λ̃
α
k ϕ̃k.

In detail: Acosta and Borthagaray [2017], Szekeres and Izsák [2016].
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Problem formulation

Time-dependent problems

We put into the correspondence the operator equation for
w(t) ∈ V h:

dw

dt
+Aαw = ψ(t), 0 < t ≤ T,

w(0) = w0,

where ψ(t) = Pf(t), w0 = Pu0 with P denoting L2-projection onto
V h.
Now we obtain an elementary a priori estimate for the solution
assuming that the solution of the problem, coefficients of the elliptic
operator, the right-hand side and initial conditions are sufficiently
smooth.
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Problem formulation

Stability of the solution

Let us multiply equation by w and integrate it over the domain Ω:(
dw

dt
, w

)
+ (Aαw,w) = (ψ,w).

In view of the self-adjointness and positive definiteness of the
operator Aα, we have (

dw

dt
, w

)
≤ (ψ,w).

The latter inequality leads us to the desired a priori estimate:

‖w(t)‖ ≤ ‖w0‖+

∫ t

0
‖ψ(θ)‖dθ.

We will focus on this estimate for the stability of the solution with
respect to the initial data and the right-hand side in constructing
discrete analogs.
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Explicit scheme

Simplest scheme

We use simplest explicit and implicit two–level schemes. Let τ be a
step of a uniform grid in time such that wn = w(tn), tn = nτ ,
n = 0, 1, ..., N, Nτ = T . It seems reasonable to begin with

wn+1 − wn

τ
+Aαwn = ψn, n = 0, 1, ..., N − 1,

w0 = w0.

Advantages and disadvantages of explicit schemes for the standard
parabolic problem (α = 1) are well-known, i.e., these are a simple
computational implementation and a time step restriction.
In our case (α 6= 1), the main drawback (conditional stability)
remains, whereas the advantage in terms of implementation
simplicity does not exist.
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Explicit scheme

Numerical implementation

The approximate solution at a new time-level is determined as

wn+1 = wn − τAαwn + τψn.

Thus, we must calculate Aαwn.
The numerical implementation is based on the following
representation:

wn+1 = −τArn + wn + τψn, rn = Aα−1wn.

We construct a numerical algorithm that employ the rational
approximation of the operator

A−β, β = 1− α, 0 < β < 1.

In this case, we solve standard problems that are related to the
operator A.
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Explicit scheme

Integral representation

We use an approximation for A−β based on integral representation
of a self-adjoint and positive definite operator A (see, e.g.,
Krasnoselskii et al. [1976], Carracedo et al. [2001]):

A−β =
sin(πβ)

π

∫ ∞
0

θ−β(A+ θI)−1dθ, 0 < β < 1.

The approximation of A−β is based on the use of one or another
quadrature formulas for the right-hand side.
Various possibilities in this direction are discussed in Bonito and
Pasciak [2015].
One possibility is special Gauss–Jacobi quadrature formulas
considered in Frommer et al. [2014], Aceto and Novati [2017].
Just this approximation of the operator A−β is used in the present
work.
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Explicit scheme

Gauss quadrature formulas

To achieve higher accuracy in approximating the the right-hand
side, it is natural to focus on the use of Gauss quadrature formulas.
Some possibilities of constructing quadratures directly for
half-infinite intervals are investigated, for example, in the work
Gautschi [1991].
The classical Gauss quadrature formulas can be used via
introducing a new variable of integration (see Frommer et al.
[2014]):

θ = µ
1− η
1 + η

, µ > 0.
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Explicit scheme

Gauss–Jacobi quadrature formula

We have

A−β =
2µ1−β sin(πβ)

π

∫ 1

−1
(1−η)−β(1+η)β−1

(
µ(1−η)I+(1+η)A

)−1
dη.

To approximate the right-hand side, we apply the Gauss–Jacobi
quadrature formula with the weight (1− η)α̃(1 + η)β̃) (see Ralston
and Rabinowitz [2001]):∫ 1

−1
f(t)(1− η)α̃(1 + η)β̃dη ≈

M∑
m=1

ωmf(ηm), α, β > −1.

Here η1, η2, ..., ηM are the roots of the Jacobi polynomial JM (η; α̃, β̃)
of degree M . The weights ω1, ω2, ..., ωM are given by the formula

ωm = −2M + α̃+ β̃ + 2

M + α̃+ β̃ + 1

Γ(M + α̃+ 1)Γ(M + β̃ + 1)

Γ(M + α̃+ β̃ + 1)(M + 1)!

2α̃+β̃

J
′
M (ηm; α̃, β̃)JM+1(ηm; α̃, β̃)

,

where Γ denotes the gamma function.
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Explicit scheme

Computational scheme

For the fractional power of the operator A, we get

A−β ≈ RM (A), RM (A) =

M∑
m=1

dm(cmI +A)−1,

where

α̃ = −β, β̃ = β−1, dm =
2µ1−β sin(πβ)

π

ωm
1 + ηm

, cm = µ
1− ηm
1 + ηm

.

The approximate solution of the problem rn = Aα−1wn is
associated with solving M standard problems
rnm = (cmI +A)−1wn, m = 1, 2, ...,M .
We employ the scheme

wn+1 = −τARM (A)wn + wn + τψn, n = 0, 1, ..., N − 1.
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Explicit scheme

Stability conditions

For a finite-dimensional self-adjoint operator A, in addition to the
lower bound, the following upper bound holds:

A ≤ δhI,

where δh = O(h−2). Thus

δαhI ≤ Aα ≤ δ
α
hI, 0 < α < 1.

Similar estimates we have also for ARM (A):

γ
h
I ≤ ARM (A) ≤ γhI, 0 < α < 1,

with some γ
h
, γh > 0.
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Explicit scheme

Basic Statement

Theorem 1. If

τ ≤ τ0 =
2

γh
,

then the scheme is stable in H and the solution satisfies the
following estimate:

‖wn+1‖ ≤ ‖w0‖+ τ

n∑
j=0

‖ψj‖, n = 0, 1, ..., N − 1.

The function zRM (z) for z ≥ z0 > 0 is a positive and monotonically
increasing function. In view of this, we have

γh < lim
z→∞

zRM (z) = γ(M,α), α = 1− β,

where

γ(M,α) =

M∑
m=1

dm.

From theorem, it follows that for the explicit scheme the time-step
restrictions do not depend on discretization in space, but depend on
the power α and the number of approximation nodes M .

27/59 c© Petr N. Vabishchevich



Explicit scheme

Remark

Special attention (see Frommer et al. [2014], Aceto and Novati
[2017]) should be given to the problem of choosing the parameter µ.
Taking into account the definition of the operator A, we are
interested in the best approximation of A−β for the smallest
(principal) eigenvalue λ̃1.
In Frommer et al. [2014], there is established a remarkable fact that
RM (z) corresponds to a Pade–type approximation for the function
z−β with expansion point µ.
Thus, the optimal choice corresponds to the selection µ = δh. In
this case, we have γ = δαh .
The computational complexity of finding δh = λ̃1 (the principal
eigenvalue of a discrete self-adjoint elliptic operator of second order)
is not high. To this end, it is possible to use standard algorithms
(see, e.g., Saad [2011]) and the corresponding software (see
Hernandez et al. [2005]).
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Implicit scheme

Two-level schemes with weights

Unconditionally stable schemes are constructed on the basis of
implicit approximations in time. Here we consider standard
two-level schemes with weights. For a constant weight parameter
σ (0 < σ ≤ 1), we define

wn+σ = σwn+1 + (1− σ)wn.

Let us consider the implicit scheme

wn+1 − wn

τ
+Aαwn+σ = ψn+σ, n = 0, 1, ..., N − 1.

For σ = 1/2, the difference scheme is the symmetric scheme (the
Crank–Nicolson scheme). It approximates the differential problem
with the second order by τ , whereas for other values of σ, we have
only the first order.
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Implicit scheme

Computational implementation

Rewrite the scheme in the form

wn+σ − wn

στ
+Aαwn+σ = ψn+σ, n = 0, 1, ..., N − 1.

In view of this, the transition to a new time-level involves the
solution of the problem

(νI +Aα)wn+σ = χn, ν =
1

στ
.

For this problem, we construct the rational approximation of the
operator

(νI +Aα)−1, 0 < α < 1.
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Implicit scheme

Integral representation

The necessary approximation is based on the following integral
representation:

(νI +Aα)−1 =
sin(πα)

π

∫ ∞
0

θα

θ2α + 2θαν cos(πα) + ν2
(A+ θI)−1dθ,

taken from the work Carracedo et al. [2001].
Using the new variable θ, we arrive at the representation

(νI+Aα)−1 =
2µ1−α sin(πα)

π∫ 1

−1
(1− η)−α(1 + η)α−1g(η; ν, α)

(
µ(1− η)I + (1 + η)A

)−1
dη,

where

g−1(η; ν, α) = 1 + 2ν cos(πα)µ−α
(

1 + η

1− η

)α
+ ν2µ−2α

(
1 + η

1− η

)2α

.
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Implicit scheme

Operator approximation

The Gauss quadrature formula is used (see Gautschi [2004]) with
the weight function

(1− η)−α(1 + η)α−1g(ηm; ν, α).

We get

(νI +Aα)−1 ≈ RM (A; ν), RM (A; ν) =

M∑
m=1

dνm(cmI +A)−1.

Thereby RM (A; 0) = RM (A).
For σ > 0, an approximate solution is obtained from

R−1
M (A; ν)wn+σ = νwn + ψn+σ,

wn+1 =
1

σ
(wn+σ − (1− σ)wn), n = 0, 1, ..., N − 1.

32/59 c© Petr N. Vabishchevich



Implicit scheme

Main result

Theorem 2. The difference scheme for σ ≥ 0.5 and

R−1
M (A; ν) ≥ νI

is unconditionally stable in H and its solution satisfies the a priori
estimate

‖wn+1‖ ≤ ‖w0‖+ τ

n∑
j=0

‖ψj+σ‖, n = 0, 1, ..., N − 1.
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Numerical experiments

Computational domain

0 1 x1

1

x2

Ω

Γ1

Γ2

Γ3
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Numerical experiments

Test problem

Consider the equation

Au = −∆u, x ∈ Ω,

with the boundary conditions
∂u

∂n
= 0, x ∈ Γ1, x ∈ Γ2,

∂u

∂n
+ gu = 0, x ∈ Γ3, g = const.

We study the case, where the solution depends only on r, and
r = (x2

1 + x2
2)1/2. By virtue of this

Au = −1

r

d

dr

(
r
du

dr

)
, 0 < r < 1,

du

dr
+ gu = 0, r = 1.
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Numerical experiments

Exact solution

The solution of the spectral problem

−1

r

d

dr

(
r
dϕk
dr

)
= λkϕk, 0 < r < 1,

dϕk
dr

+ gϕk = 0, r = 1,

is well-known. Eigenfunctions are represented as zero-order Bessel
functions:

ϕk(r) = J0(
√
λkr),

whereas eigenvalues λk = ν2
k , where νk, k = 1, 2, ... are roots of the

equation
νJ

′
0 (ν) + µJ0(ν) = 0.

The general solution of the homogeneous Cauchy:

u(r, t) =

∞∑
k=1

ak exp(−ν2α
k t)J0(νkr).
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Numerical experiments

Test solution

To study the accuracy of the approximate solution of the
time-dependent equation with the fractional power of an elliptic
operator, we use the exact solution

u(r, t) = exp(−ν2α
1 t)J0(ν1r)+1.5 exp(−ν2α

3 t)J3(ν3r), r = (x2
1+x2

2)1/2.

The values of the roots ν1, ν3 for different values of the boundary
condition µ are given in Table.

Table: The roots of equation

k g = 1 g = 10 g = 100

1 1.25578371 2.17949660 2.38090166
3 7.15579917 7.95688342 8.56783165
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Numerical experiments

The exact solution for T = 0.25 at different values of g

The solution for different g (α = 0.5):
left: g = 1; center: g = 10; right: g = 100.
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Numerical experiments

The exact solution for T = 0.25 at different values of α

The solution for different α (g = 10):
left: α = 0.25; center: α = 0.5; right: α = 0.75.
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Numerical experiments

Calculation FEM grid

Left: 1 — 123 vertices and 208 cells;
center: 2 — 461 vertices and 848 cells;
right: 3 — 1731 vertices and 3317 cells.

40/59 c© Petr N. Vabishchevich



Numerical experiments

Computational implementation

The finite element approximation in space is based on the use of
continuous P1 Lagrange element, namely, piecewise-linear elements.
The calculations were performed using the computing platform
FEniCS for solving partial differential equations (website
http://fenicsproject.org, Logg et al. [2012], Alnæs et al. [2015]).
To solve spectral problems with symmetrical matrices, we use the
SLEPc library (Scalable Library for Eigenvalue Problem
Computations, http://slepc.upv.es, Hernandez et al. [2005]).
We apply the Krylov-Schur algorithm, a variation of the Arnoldi
method, proposed by Stewart [2001].
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Numerical experiments

Discrete operator A

Table presents the lower and upper bounds of the operator
spectrum on various grids for different values of the parameter g in
the boundary condition.

Table: The spectrum bounds of the operator A

g δ = λ1 grid δh δh
1 1.57959231369 4225.51507674

1 1.57699272630 2 1.57763558651 17104.1780271
3 1.57715815735 74989.7519112
1 4.76409956820 4252.23867499

10 4.75020542941 2 4.75363764524 17143.1279728
3 4.75108440807 74989.7519112
1 5.68846224707 7310.80621520

100 5.66869271459 2 5.67358161306 22017.7463507
3 5.66994292109 74989.7519112
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Numerical experiments

Approximation error

The numerical solution is compared with the exact one at the final
time moment u(x, T ). Error estimation is performed in L2(Ω) and
L∞(Ω):

ε2 = ‖wN (x)− u(x, T )‖, ε∞ = max
x∈Ω
|wN (x)− u(x, T )|.

Figure shows the absolute error arising from the approximation of
z−β by the function RM (z) for β = 0.5 and g = 10. In this case,
µ = δ and RM (z0) = z−β0 .
We see higher accuracy near the left boundary z = z0, whereas for
large z, the approximation accuracy decreases. The effect of
increasing accuracy with increasing number of nodes of the
quadrature formula is clearly observed.
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Numerical experiments

Approximation error for β = 0.5

µ = δ, z−β0 = 0.458821546223
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Numerical experiments

Approximation error for β = 0.5 (µ = 50)

Decreasing the approximation accuracy at z ≈ z0, we can increase
the accuracy for other values of z. Figure demonstrates the
approximation accuracy for µ = 50. In this case RM (µ) = µ−β .
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Numerical experiments

Approximation error for β = 0.25

µ = δ, z−β0 = 0.677363673534
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Numerical experiments

Approximation error for β = 0.75

µ = δ, z−β0 = 0.310789048046
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Numerical experiments

Approximation of Aα (α = 0.5) for various M

The numerical implementation of the explicit scheme involves the
approximation of the operator Aα by the expression
ARM (A)(β = 1− α). Peculiarities of this approximation at
α = 0.5, g = 10 are shown in Figure.
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Numerical experiments

Operator of explicit scheme

The upper bounds of the operator ARM (A) are given in Table for
g = 10.
Increasing γ(M,α) with increasing the number of quadrature
formula nodes M results from increasing the accuracy of
approximation of the unbounded operator Aα.
As α decreases, the value of γ(M,α) decreases drastically.

Table: The upper bounds of the operator ARM (A)

M γ(M, 0.25) γ(M, 0.5) γ(M, 0.75)

5 4.4602175 21.794966 142.00220
10 6.3106349 43.589932 401.45610
20 8.9256294 87.179864 1135.3565
40 12.623116 174.35973 3211.1792
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Numerical experiments

Explicit scheme

Now we present numerical results obtained using the explicit
scheme.
We confine ourselves to the case α = 0.5 with the value of the
boundary condition parameter g = 10.
It is interesting to identify the dependence of accuracy on grids in
space and time.
In our case, we should also study the influence of the number of
quadrature formula nodes M . Tables demonstrates the numerical
solution convergence for decreasing the time step and increasing the
accuracy of approximation of the fractional power operator.

50/59 c© Petr N. Vabishchevich



Numerical experiments

Error of the solution for the explicit scheme

Table: Grid 2 (µ = 10, α = 0.5)

M N 25 50 100 200
5 ε2 0.00436648 0.00207328 0.00094905 0.00041937

ε∞ 0.01896717 0.00927482 0.00447550 0.00216564
10 ε2 0.00507635 0.00277981 0.00164515 0.00108352

ε∞ 0.02186657 0.01217982 0.00738292 0.00499609
20 ε2 0.00507902 0.00278251 0.00164787 0.00108627

ε∞ 0.02187724 0.01219044 0.00739354 0.00500671
40 ε2 0.00507902 0.00278251 0.00164787 0.00108627

ε∞ 0.02187723 0.01219043 0.00739352 0.00500669
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Numerical experiments

Spatial grid refinement

Table: Error of the solution for various spatial grids
(µ = 10, α = 0.5,M = 20)

grid N 25 50 100 200
1 ε2 0.00641387 0.00419465 0.00310833 0.00257568

ε∞ 0.02505950 0.01634587 0.01202969 0.00988175
2 ε2 0.00507902 0.00278251 0.00164787 0.00108627

ε∞ 0.02187724 0.01219044 0.00739354 0.00500671
3 ε2 0.00472777 0.00241442 0.00126921 0.00069981

ε∞ 0.02077071 0.01081355 0.00588308 0.00342987
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Numerical experiments

Function (ν + zα)−1 for α = 0.5, z ≥ z0 = δ at various ν

The numerical implementation of implicit schemes is associated
with the function (ν + zα)−1.
The function (ν + zα)−1, which corresponds to our test problem for
α = 0.5, is shown in Figure.
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Numerical experiments

Function RM(z; ν) for α = 0.5, ν = 200 at various M

Figure shows the approximating function RM (z; ν) for ν = 200 with
µ = δ. Operator approximations were designed using the package
ORTHPOL (see Gautschi [1994]).
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Numerical experiments

Function RM(z; ν) for α = 0.5, ν = 400 at various M
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Numerical experiments

Function RM(z; ν) for α = 0.5, ν = 800 at various M
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Numerical experiments

Implicit scheme

The accuracy of the approximate solution of the test problem was
investigated for α = 0.5, µ = 10, and g = 10.
able demonstrates the dependence of the solution accuracy on the
grid in time for various numbers M .

Table: Error of the solution for the implicit scheme on grid 2

M N 25 50 100 200
5 ε2 0.00326281 0.00111138 0.00044581 0.00078676

ε∞ 0.01672817 0.00699940 0.00208775 0.00313725
10 ε2 0.00394436 0.00173870 0.00063823 0.00018398

ε∞ 0.01975034 0.01002383 0.00511271 0.00264674
10 ε2 0.00394696 0.00174126 0.00064056 0.00018400

ε∞ 0.01976054 0.01003442 0.00512346 0.00265756
10 ε2 0.00394696 0.00174126 0.00064056 0.00018399

ε∞ 0.01976037 0.01003433 0.00512339 0.00265750
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Conclusion

1 There is considered a nonclassical problem with the initial
data, which is described by an evolutionary equation of first
order with a fractional power of an elliptic operator. The
multidimensional problem is approximated in space using
standard finite element piecewise-linear approximations.

2 The explicit scheme is implemented using a Pade-type
approximation for the fractional power elliptic operator.
Sufficient conditions for the stability of the explicit scheme are
formulated. They do not depend on spatial grid steps.

3 Rational approximation is employed to implement implicit
schemes. It is based on a computational generation of Gauss
quadrature formulas for an integral representation of the
operator of transition to a new time-level.

4 Possibilities of the proposed algorithms were demonstrated
through numerical solving a test two-dimensional problem.
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