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e For singularly perturbed semilinear reaction-diffusion equations

—e*Au+ f(z,u) =0

where z € Q < R?, subjectto v =0 on df2

f(x,u) — f(z,v) = C¢[u — v] whenever u>=wv,|e*+C; =21

we look for residual-type a posteriori error estimates

error|| < function(mesh, comp.sol-n
Jerror], ( )

where | - ||, is the maximum norm or the energy norm

on anisotropic meshes

e To simplify the presentation, main focus will be on | € =

|

norm becomes the /' norm); but similar results for ¢ « 1...

(so the energy
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Interpolation error bounds =

anisotropic meshes are superior for layer solutions

(a) Standard mesh.  (b) Fine mesh.  (c) Shape-regular refinement.  (d) Anisotropic ref-nt.

E%
:




anisotropic meshes are superior for layer solutions

BUT theoretical difficulties within the FEM framework...

— It’s not just about working hard and tracking all the constants very carefully
— New tricks are required...

ALSO Perceptions and expectations t.b. adjusted for
anisotropic meshes




Section A | PERCEPTIONS & EXPECTATIONS...

One Perception: the computed-solution error in the maximum norm is closely

related to the corresponding interpolation error...

e Quasi-uniform meshes, linear elements

| —un| @ < In(C +¢e/h) ;gsf |l — x|z,

— Schatz, Wahlbin, On the quasi-optimality in L., of the H L_projection into
finite element spaces, Math. Comp. 1982: —Au = f,

— Schatz, Wahlbin, On the finite element method for singularly perturbed
reaction-diffusion problems ..., Math. Comp., 1983: —&?/Au + au = f,




Section A | PERCEPTIONS & EXPECTATIONS...

One Perception: the computed-solution error in the maximum norm is closely

related to the corresponding interpolation error...

e Quasi-uniform meshes, linear elements

| —un| @ < In(C +¢e/h) ;gsf |l — x|z,

— Schatz, Wahlbin, On the quasi-optimality in L., of the H L_projection into
finite element spaces, Math. Comp. 1982: —Au = f,

— Schatz, Wahlbin, On the finite element method for singularly perturbed
reaction-diffusion problems ..., Math. Comp., 1983: —&?/Au + au = f,

e Strongly-anisotropic triangulations: no such result
— BUT this is frequently considered a reasonable heuristic conjecture t.b. used
in the anisotropic mesh adaptation (Hessian-related metrics...)

— IN FACT, this is NOT true (see next)




Example: —?Au + u = 0 with u = e~%/¢ exhibiting a sharp boundary layer

Observation #1: Mass Lumping may be superior on anisotropic meshes

Standard linear FEM Mass Lumping
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Here we use a Shishkin mesh: piecewise-uniform, DOF ~ N2 mesh diameter ~ N !

lu —u'|z, @ ~ N>In* N ~ DOF~'In(DOF)




Same Example: —e?Au + u = 0 with u = e~%/¢ exhibiting a sharp boundary layer

Observation #2: Convergence Rates may depend on the mesh structure (even for

mass lumping), NOT ONLY on the interpolation error
Standard linear FEM
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Here we use a graded Bakhvalov mesh:

Mass Lumping
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WHAT GOES WRONG??

e A theoretical explanation of the above phenomena is given in:

N.Kopteva, Linear finite elements may be only first-order pointwise accurate on
anisotropic triangulations, Math. Comp., 2014.




WHAT GOES WRONG??

What happens in Q := (0, 2¢) x (—H, H)
with the tensor-product mesh wy, := {z; = 5Nio}fi\%) x {—H,0, H}??

H

Toin g < Q: o

T in €:

Mass lumping, U; := uy(x;,0) and U := wy,(z;, +H):

2 2
(Uit +2U; = Usa] + 5[0 + 205 = U] + 3 Ui = 0
with ; = 1 for i # No, and| YN, = %

52

c<H = 3

|—Ui—1 +2U; — U;44]

—|—’Y1UZ'=0




IMPLICATIONS

Implications of the above example:

e Theoretical:

if one tries to prove “standard” (almost) second-order a priori/a posteriori er-
ror estimate in the maximum norm on a general anisotropic mesh, this may be
impossible...

e Anisotropic mesh adaptation (Hessian-related metrics...):

One needs to be careful with the heuristic conjecture that the computed-solution
error in the maximum norm is closely related to the corresponding interpolation
eITor. ..




Non-singularly-perturbed EXAMPLE [Nochetto et al, Numer. Math., 2006]:
—Au + f(u) = 0with f(u) ~ —u"% and u = \/x

1 1 1

0 0 0
0 1 0 1 o € 1
—©—linearFE k. —©—linearFE k. —©—linearFE
—E&—|umped-mass LT —&—|umped-mass Ll T —&—|umped-mass
777N_2 E 10° | '\.\ N_z E 10 \\ '\.\ 777N_2 E|

Graded mesh: {(i/N)®} N : H’LL — uIHLOO(Q) ~ N2~ DOF_l

Mesh transition parameter: € = 0.1
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Part O

Laplace equation —Awu = f(z), linear elements, shape-regular mesh
[Ainsworth & Oden, 2000, Chap. 2]

e H!'norm [Babuska & Miller, 1987]

) ) 7 1/2
un =l < {5 ( 1o ey + WRIIVWlE, o) )}

~hroul? ~[lhr D2ul?_

~ ||hr DQUHLQ(Q) ~ ||linear interpolation eI'I'Ol‘Hﬂl(Q)




Part O

Laplace equation —Awu = f(z), linear elements, shape-regular mesh
[Ainsworth & Oden, 2000, Chap. 2]

e H!'norm [Babuska & Miller, 1987]

) ) 7 1/2
un =l < {5 ( 1o ey + WRIIVWlE, o) )}

TeT S ~~ ~~
~hzul? g ~|hz D2l ;.

~ ||hr DzuHLQ(Q) ~ ||linear interpolation eI'I'Ol'Hﬂl(Q)

e [, norm [Eriksson, 1994], [Nochetto, 1995]

lun — ulr, @ < In(hpi,) fjﬂgg{ fLQT |flzea) + hrl[Vun]lzen) }

~N ~N

~h | Au| Lo (1) ~h | D%u| 1o, (1)

~ HhQTDQUHLOO(Q) ~ Hlinear interpolation errorHLoo(Q)




Laplace equation —Awu = f(z), linear elements, shape-regular mesh :

In the H' and L., norms:

HerrorH* < function (mesh, comp.solution)

~ | linear interpolation error ||,
\ _J/

Y
discrete analogue

Higher-order elements + other norms + other equations have been considered
as well.

PURPOSE of such bounds: to be used in the automatic mesh adaptation...




—e?Au + f(x, u) = (), shape-regular mesh, any-order FEM,
also analogous lower bounds...

e Energy norm ||error||..q := €| Verror|,q) + |etror| ., q)

[Verfiirth, Numer. Math., 1998, —c?/Au + u = f(x)], for linear FEs :

. h . 1/2
U2 (inf1, 2 £Cun) gy +min{L =) # eIVl en) )]

TeT v~

~"

NH&’:‘]’LT DQUH
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“‘thTAuHQLQ(T) Lo(T)




—e? Ay + f (:E, u) = (), shape-regular mesh, any-order FEM,
also analogous lower bounds...

e Energy norm ||error|..q := €| Verror|,q) + |error| ., )

[Verfiirth, Numer. Math. 1998, —c?/Au + u = f(x)], for linear FEs :

{Z( Hmln{l _}f Uh)HLQ(T —|—m1n{1 } h HgﬂV“hﬂHLo@ aT) )}1/2

TeT ~ v
NthT D? uHLQ(T)

R thTAuHLQ(T)

e L., norm [Demlow & Kopteva, Numer. Math. 2015], for linear FEs :

max{ mln{l Kh > } Hf , Uk) || Lo ( T) +min{e, lphr} H[[V"U»h]]HLOO }

TeT

~€2\Ahuh\+0(h2) NhT‘DQU‘

where ¢, = In(2 + ¢h

m1n>




Part 1

—&?Au+ f(z,u) =0, ANISOTROPIC mesh :

e L., norm [Kopteva, SIAM J. Numer. Anal., 2015, N€W fore = 1ande « 1]




Part 1

—&?Au+ f(z,u) =0, ANISOTROPIC mesh :

e L, norm [Kopteva, SIAM J. Numer. Anal., 2015, NCW for €= lande « 1]

e Energy norm ||error||..q = €|Verror|,q) + |lerror| ., )

— [Kunert, Kunert & Verfiirth, Numer. Math., 2000, —N\u = f([E), —e2Au+u = f(z)]

ISSUE: the error constant involves the so-called matching function

m(u — up, T) |, which may be as large as the mesh aspect ratio f—;ﬁ,

which 1s UNDESIRABLE...

— [Kopteva, Numer. Math., 2017, NCW for €= lande « 1]
extends the framework of [Kopteva, SIAM J. Numer. Anal., 2015]

from the L, to the energy norm... (NO matching functions! )




A posteriori estimator [Numer.Math.-2017]

Energy norm | por - — 1, linear FEM, our ESTIMATOR reduces to

1/2
lup — v <C {Z h.H, H[[Vuh]]Hio7 } + interior-residual terms
zeN .

C'is independent of the diameters and the aspect ratios of elements in 7.

Here f;, = f(-,un), NV is the set of nodes in T, [Vu,] is the standard jump in
the normal derivative of u; across an element edge, w, is the patch of elements
surrounding any z € N/, +, is the set of edges in the interior of w,, H, = diam(w,),

and| h.H, ~ |w.| = local volume |

e For ¢ = 1, this gives a standard a posteriori error bound, similar to [Babuska et
al], only now we prove it for anisotropic meshes.

e Relation to interpolation error bounds: |[Vuy|| may be interpreted as approx-
imating the diameter of w, under the metric induced by the squared Hessian
matrix of the exact solution.




Roughly speaking, want to include meshes of the type:




e Permitted mesh node types:

e Example of a mesh for

which the analysis works:




Notation: Hyp := diam(T), hy :=2H;'|T|, H, := diam(w.), h. := maxhy

Tcw,

Main Triangulation Assumptions:

e Maximum Angle condition.

e Local Element Orientation condition. For any z € N, with the patch w, of
elements surrounding z, there is a rectangle R, © w, such that |R,| ~ |w,]|.

e Also let the number of triangles containing any node be uniformly bounded.

Mesh Node Types:

= = >




Part 2 | A bit of analysis

Standard Steps:

— Error represenation via Green’s function GG (L., norm) or similar (energy norm)
— Use Galerkin orthogonality to replace G by G — Gy,
— Apply the Divergence Theorem = the error bound includes

Jump Residual terms (D integrals over mesh edges)

Interior Residual terms (D] integrals over mesh elements)

3 technical issues t.b. addressed:

1. Application of a Scaled Trace theorem when estimating the Jump Residual

("long” edges cause problems...)

2. Interior Residual

3. Quasi-interpolants (of Clément/Scott-Zhang type) are not readily available for
general anisotropic meshes [Apel, Chapt. III]...(may be of independent interest)




L., norm |— RD EQ, ERROR VIA GREEN’S FUNCTION

e For a solution v and any uj, € Hg(2) n W{(Q) with ¢ > n = 2,

[un = ul(z) = *(Vup, VG(z,-)) + (f(-,un), G(z,))

HINT: using the standard linearization f(x,uy) — f(z,u) = p(x)|u, — u]
with p = Sé ful,u + [up —uls)ds = Cy =0

e For each fixed x € (), the Green’s function G = G(z, -) solves the problem

L*G = —e*A:G +p()G = d(x—&), £ e,
G(x;¢) = 0, £ € 0.

(NOTE: similar to the dual problem...)




L., norm |— RD EQ, ERROR VIA GREEN’S FUNCTION

e For a solution v and any uj, € Hy(2) n W{(Q2) with ¢ > n = 2,

up — U = 82(VU}L, VG) + (f(, uh), G)

e THEOREM [Demlow, Kopteva, 2015] For any z € (2,

|G (2, ) |ue +elVG(z,)|e S 1.

For the ball B(x, o) of radius p centered at z € Q, and /, := In(2 + cp™ '),

A

HG(CC, ')Hl,B(:I:,Q)mQ 5_2Q2 €Q7
HVG(CCJ ) Hl,B(x,g)mQ

|D*G(z,-)

—
€ 0

_9
€ ég

(A

A

LO\B(z,0)




Energy norm |— SIMILAR ERROR REPRESENTATION

e For a solution v and any uj, € Hy(2) n W{(Q2) with g > n = 2,

using the monotonicity of f and C; 4+ ¢* > 1, one gets
lun —ullZ.q < XV (un —u), V(un — u)) + {f(5un) — f5u),un —w)
= &*(Vup, V(up — )y + (-5 un), un —uy,
where we also used —?Au + f(x,u) = 0.

Next, assuming |||up — ul-.o > 0, let

Up — U
G = = |IGlle;a =1

llun = ulle0

= | lun — ull-0 < eXVun, V&) + (f(un), &)

— similar to the case of L., norm, only G is no longer the Green’s function...




JUMP & INTERIOR RESIDUAL

NEXT: | |[up, — u|.. = &*(Vuy, V(G — G))) + (fn, G — Gy)

\V/Gh € Sh




JUMP & INTERIOR RESIDUAL

NEXT: Huh — uH = €2<V’LL}L, V(G — Gh)) + (fh, G — Gh) VG, € Sy,

NOTE: by the Divergence Theorem for each T’ < 7T,

fT Vuy - V(G = Gy)) = f

oT

(G — G)) Vg, - v — L Ay (G — Gy)
SO
]uh—uH Z8J G Gh [[VU}L]] V—l—Zf h—E Auh)(G Gh)

SeS TeT ='O




JUMP & INTERIOR RESIDUAL

NEXT: Huh — UH — 82(VUh, V<G — Gh)) + (fh, G — Gh) VG, € Sy

NOTE: by the Divergence Theorem for each T' — T,

fT Vuy, - V(G = G)) = f

oT

(G — Gh)) Vuh o Z J; Auh (G — Gh))
SO
Huh — ’LLH Z f G Gh [[V’Lbh]] vV + Z f fh — 5 Auh )(G Gh)

SeS TeT :O

As VG), € Sy, so replace (G — (),) by
G—Gh_ Zgngz — Z[G_Gh_gz]gbz

zeN zeN

where ¢, = the standard hat function associated with a node z

fn =l = 3 | 16 Gr— g 1o IVul v+ Y hle-Gi-ale.
zeN V= zeN




ISSUE #1: JUMP RESIDUAL ESTIMATION

JUMP RESIDUAL: | [ := Z 52J (G — G — g.]0.[Vurn] - v |(§ over edges)
zeN =

NOTE: An inspection of standard proofs for shape-regular meshes reveals that one

obstacle in extending them to anisotropic meshes lies in the application of a Scaled
Trace Theorem when estimating the jump residual terms (this causes the mesh
aspect ratios to appear in the estimator; ’long” edges cause this problem).

Scaled Trace Theorem (for anisotropic elements; sharp):

h,
g T
Se{s{lIolg}e{dges} HU’ L3 H, SE{II()II}gaf,({iges} HU‘

1;9 S Hz_le\

1w, + [V

1w,




ISSUE #1: JUMP RESIDUAL ESTIMATION

JUMP RESIDUAL: | [ := ) ¢’ f (G — G — 3.]6:[Vun] - v
zeN =z

NOTE: An inspection of standard proofs for shape-regular meshes reveals that one
obstacle in extending them to anisotropic meshes lies in the application of a Scaled
Trace Theorem when estimating the jump residual terms (this causes the mesh
aspect ratios to appear in the estimator; ’long”’ edges cause this problem).

NOTE standard choices: | g, = 0 |, or SWZ(G — G, — g.) ¢. = 0 | [Nochetto].

Our CHOICE is crucial in addressing this difficulty:

N

F ) IS

& 7=(£) ©2(£)
5/0\§+ f




ISSUE #2 INTERIOR RESIDUAL

In order to give a sharper (and more anisotropic in nature) bound for the interior-
residual component of the error, we 1dentify sequences of short edges that connect
anisotropic nodes (and call each of them a Path):

\

Main Additional Assumption: (Curvilinear version also ok...)

e Path Coordinate-System condition. For each (semi-)anisotropic path N, 1 =

1,..., Nani + Ng.ani, let there exist a cartesian coordinate system (£, 1) = (&, ;)
such that |sin(Z(S,i¢))| < %‘ for any S — S, of any node z € N; (while, if N;

is semi-anisotropic a stronger condition | £ (S, i¢)| < I%zl is satisfied).




ISSUE #3 GREEN’S FUNCTION INTERPOLANT

TASK: estimate

6 =2 3 (M2IV(G = GWlbr + A2IG = Gall ) Ar := minfe, Hr},

TeT

Aim: | © < {; |forp =1 for L,, norm, or © < 1 |forp=2..

e It would be convenient to employ a quasi-interpolant (of Clément/Scott-
Zhang type) with the property

G — Ghlipr S HY *|Glipwr forany0< | k< j <2, p=1.

: : : : H7F
T.b. more precise, the estimator involves mm{ | —2T
£

~—— Y=

from k=5 from k<j

e However, such interpolants are not readily available for general anisotropic
meshes (see [Apel, Chapt. III] for a discussion of Scott-Zhang-type interpola-
tion on anisotropic tensor-product meshes).




ISSUE #3 GREEN’S FUNCTION INTERPOLANT

e [t would be convenient to employ a quasi-interpolant (of Clément/Scott-Zhang
type) with the property

G — Gl .TsHj_kG- wrforany 0 < | A< (<2, p=1.
P 3 T J1,PwWT

e However, such interpolants are not readily available for anisotropic meshes

e To deal with the maximum norm [Kopteva, 2015]:

Because of this difficulty, we employ a less standard interpolant (&, which gives
a version of the Lagrange interpolant whenever /7 < <, and vanishes when-
ever [ = ¢; however, this construction requires additional mild assumptions
on the triangulation...

e To deal with the energy norm [Kopteva, 2017]:

Quasi-interpolant of Clément/Scott-Zhang type are introduced on
anisotropic meshes...




Part 3

Simple 2d TEST problem: —&?Au +u = F(z)inQ = (0,1)? with e? = 107,
u=4y(l—y)[1—a®— (e —e %) /(1 - e")]

We consider one a-priori-chosen layer-adapted mesh of Bakhvalov type:
1

Oo E 1

e The mesh is chosen so that the linear interpolation error |u — u/| .0 < N2

e However, as ¢ — 0, the convergence rates deteriorate from 2 to 1.
This phenomenon 1s noted and explained in

[N. Kopteva, Linear finite elements may be only first-order pointwise accurate
on anisotropic triangulations, Math. Comp. 2014.].




Table: Bakhvalov mesh, M = %N : maximum nodal errors and estimators.

N e=1 =27 =2 =27 =27 927 —927
Errors (odd rows) & Computational Rates (even rows)

64 | 3.373e-4  3.723e-3 8.952¢-3 8.973e-3 8.973e-3 8.973e-3 8.973e-3

2.00 1.91 1.01 1.00 1.00 1.00 1.00

128 | 8.445e-5 9.935e-4 4.446e-3 4.484e-3 4.484e-3 4.484e-3 4.484e-3

2.00 1.98 1.04 1.00 1.00 1.00 1.00

256 | 2.112e-5  2.523e-4 2.165e-3 2.236e-3 2.236e-3 2.236e-3 2.236e-3
FIRST Estimator (odd rows) & Effectivity Indices (even rows)

64 | 6.810e-3  2.516e-1 9.403e-1 9.981e-1 9.999¢-1 1.000e+0  1.000e+0

20.19 67.59 105.04 111.23 111.44 111.45 111.45

128 | 1.761e-3  1.120e-1 8.858e-1 9.961e-1 9.999%¢-1 1.000e+0  1.000e+0

20.86 112.72 199.26 222.15 222.98 223.01 223.01

256 | 4.480e-4  4.036e-2 7.901e-1 9.922e-1 9.998e-1 1.000e+0  1.000e+0

21.21 159.97 365.01 443.82 447.17 447.27 447.28




Table: Bakhvalov mesh, M = %N : maximum nodal errors and estimators.

N e=1 =27 =2 =27 =27 927 —927
Errors (odd rows) & Computational Rates (even rows)

64 | 3.373e-4  3.723e-3 8.952¢-3 8.973e-3 8.973e-3 8.973e-3 8.973e-3

2.00 1.91 1.01 1.00 1.00 1.00 1.00

128 | 8.445e-5 9.935e-4 4.446e-3 4.484e-3 4.484e-3 4.484e-3 4.484e-3

2.00 1.98 1.04 1.00 1.00 1.00 1.00

256 | 2.112e-5  2.523e-4 2.165e-3 2.236e-3 2.236e-3 2.236e-3 2.236e-3
SECOND Estimator (odd rows) & Effectivity Indices (even rows)

64 | 7.353e-3  1.204e-1 1.224e-1 1.230e-1 1.302e-1 1.302e-1 1.302e-1

21.80 32.33 13.68 14.48 14.51 14.51 14.51

128 | 1.885e-3  3.212e-2 6.005e-2 6.621e-2 6.646e-2 6.647¢e-2 6.647e-2

22.32 32.33 13.51 14.77 14.82 14.82 14.82

256 | 4.771e-4  8.268e-3 3.073e-2 3.328e-2 3.354e-2 3.354e-2 3.354e-2

22.59 32.77 14.20 14.89 15.00 15.00 15.00




We considered one a-priori-chosen layer-adapted mesh of Bakhvalov type:

1

0

b € 1 maximum nodal errors

e The mesh is chosen so that the linear interpolation error |[u — u/||y..0 < N2
e However, as ¢ — 0, the convergence rates deteriorate from 2 to 1.

e E.g., for the final choice of € and /V, the aspect ratios of the mesh elements take
values between 1 and 3.6e+8.

e Considering these variations, the SECOND estimator performs reasonably well
and its effictivity indices stabilize as ¢ — 0.

e By contrast, the FIRST estimator is adequate for € ~ 1, but its effectivity dete-
riorates in the singularly perturbed regime.




Table: Bakhvalov mesh, M = %N : €NErgy-norm €rrors and estimators.

N e=1 =27 =27 =27 =27 927 =27
Errors (odd rows) & Computational Rates (even rows)

64 | 3.202e-2 5.081e-3 7.993e-4 1.408e-4 2.489¢-5 4.399¢-6 7.777e-7

1.00 0.99 1.00 1.00 1.00 1.00 1.00

128 | 1.602e-2  2.564e-3 3.991e-4 7.028e-5 1.242e-5 2.196e-6 3.882e-7

1.00 0.99 1.00 1.00 1.00 1.00 1.00

256 | 8.011e-3  1.289e-3 1.997e-4 3.511e-5 6.207e-6 1.097e-6 1.940e-7
SECOND Estimator (odd rows) & Effectivity Indices (even rows)

64 | 1.04le-1  2.102e-2 4.129e-3 7.393e-4 1.308e-4 2.311e-5 4.086¢-6

3.25 4.14 5.17 5.25 5.25 5.25 5.25

128 | 5.147e-2  1.051e-2 2.050e-3 3.711e-4 6.566e-5 1.161e-5 2.052e-6

3.21 4.10 5.14 5.28 5.29 5.29 5.29

256 | 2.559e-2  5.269e-3 1.006e-3 1.858e-4 3.290e-5 5.817e-6 1.028e-6

3.19 4.09 5.04 5.29 5.30 5.30 5.30

NOTE fore « 1: |up—u!|z.0 ~e|Vu, — (Vu)!||z.q =~ e/2N1

g Huh_uHZ;Q ~ H‘Uh—umg’g ~ gl/zN_l ‘I‘N_2




L., NORM

Simple 2d TEST problem: —&?Au +u = F(z)in Q = (0,1)? with ¢ = 1079,
u=4y(1-y)[l —2> (7" —e V%) /(1 — e=¥F)]

Maximum errors for ¢ = 10™* and initial DOF varied (left), and ¢ varied (right):

oL ‘ ‘ ‘ ‘ E 0t ‘ RE— PR :::: RN T 5% ‘
10 10 oot i o o102
—8—¢=10"
—*—¢=10"°
101t —&— =108
- - 1071 . 1-0
o e
o o}
107
102+
10°¢ ‘ ‘ ‘ ‘ ‘ ‘
500 2,000 8,000 32,000 500 1,000 2,000 4,000

DOF DOF

In each experiment, we started with a uniform mesh of right-angled triangles of diameter Hr =
278, 2716 9732 and aspect ratio I,;I—;-f — 2. At each iteration, we marked for refinement the mesh
elements responsible for at least 5% of the overall estimator £, but no more than 15% of the elements.
The marked elements were refined only in the x direction using a single or triple green refinement
(depending on the orientation of the mesh element). Edge swapping was also employed to improve

geometric properties of the mesh and/or possibly reduce maxrer{osc(fi;T)}.




Why anisotropic meshes?

Section A

Perceptions & expectations t.b. adjusted for anisotropic meshes

Part O

Part 1

Part 2

Part 3

Section B

Standard residual-type estimators on shape-regular meshes;
their relation to interpolation errors

Recent a posteriori estimates on anisotropic meshes

A bit of analysis: 3 technical issues addressed...




Section C

Lower Error Estimators on anisotropic meshes in the energy norm???
(consistent with upper estimators?)

e Standard Bubble Function Approach
This approach was employed by [Kunert & Verfiirth 2000, Kunert 2001]: let ¢ = 1,

1/2
e={ Y osBB+Ihrfila} < lun - ulme + hr(fa — D)l
SeS\o0

For S = 0T n 0T5: 0g = ‘S] min{th, th}

We give a numerical example (for € = 1) that clearly demonstrates that

short-edge jump residual terms in such bounds are not sharp




Section C

Lower Error Estimators on anisotropic meshes in the energy norm???
(consistent with upper estimators?)

e Standard Bubble Function Approach
This approach was employed by [Kunert & Verfiirth 2000, Kunert 2001]: let ¢ = 1,

1/2
e={ Y osBB+Ihrfila} < lun - ulme + hr(fa — D)l
SeS\o0

For S = 0T n 0T5: 0g = ‘S] min{th, th}

We give a numerical example (for € = 1) that clearly demonstrates that
short-edge jump residual terms in such bounds are not sharp
e So, under additional restrictions on the anisotropic mesh, we shall give a new

bound for the short-edge jump residual terms, and thus show that at least for
some anisotropic meshes the error estimator constructed in the paper 1s efficient.

Fore = 1and S = 0T} n 0T%: os = | T U T| = local volume




Table 1: Lower error estimators for test problem with v = sin(7wax) and € = 1.

a=1 a=3
N =20 N =40 N =80 N =20 N =40 N =80
Errors |un — u| g1 (g
M= 2N 1.0le-1 5.04e-2 2.52e-2 9.26e-1 4.56e-1 2.27e-1
M = &8N 1.01le-1 5.04e-2 2.52e-2 9.26e-1 4.56e-1 2.27e-1
M = 32N 1.0le-1 5.04e-2 2.52e-2 9.26e-1 4.56e-1 2.27e-1
M =128N 1.01le-1 5.04e-2 2.52e-2 9.26e-1 4.56¢-1 2.27e-1
E with o5 = |S| min{hr,, hr,} (odd rows) & Effectivity Indices (even rows)
M= 2N 2.89%e-1 1.45e-1 7.24e-2 2.51e+0 1.26e+0 6.33e-1
2.87 2.88 2.88 2.72 2.78 2.79
M = 8N 1.32e-1 6.59%-2 3.30e-2 1.17e+0 5.86e-1 2.93e-1
1.31 1.31 1.31 1.26 1.29 1.29
M = 32N 6.27e-2 3.14e-2 1.57e-2 5.62e-1 2.82e-1 l.41e-1
0.62 0.62 0.62 0.61 0.62 0.62
M =128N 3.10e-2 1.55e-2 7.75e-3 2.79e-1 1.39-1 6.97¢-2
0.31 0.31 0.31 0.30 0.31 0.31

Standard Bubble Function Approach = Lower Estimator NOT SHARP




Table 2: Lower error estimators for test problem with . = sin(7wax) and € = 1.

a=1 a=3
N =20 N =40 N =80 N =20 N =40 N =80
Errors |un — u| g1 (g
M= 2N 1.01e-1 5.04e-2 2.52e-2 9.26e-1 4.56e-1 2.27e-1
M = 8N 1.01e-1 5.04e-2 2.52e-2 9.26e-1 4.56e-1 2.27e-1
M = 32N 1.01e-1 5.04e-2 2.52e-2 9.26e-1 4.56e-1 2.27e-1
M =128N 1.01e-1 5.04e-2 2.52e-2 9.26e-1 4.56e-1 2.27e-1
E with ps = |T1 U T»| (odd rows) & Effectivity Indices (even rows)
M= 2N 3.00e-1 1.50e-1 7.52e-2 2.61e+0 1.32e+0 6.59%e-1
2.98 2.98 2.98 2.82 2.89 2.90
M = 8N 2.51e-1 1.26e-1 6.28e-2 2.25e+0 1.13e+0 5.64e-1
2.49 2.49 2.49 2.43 2.47 2.48
M = 32N 2.47e-1 1.23e-1 6.18e-2 2.21e+0 1.11e+0 5.56e-1
2.45 2.45 2.45 2.39 2.44 2.45
M =128N 2.46e-1 1.23e-1 6.17e-2 2.21e+0 1.11e+0 5.55e-1
2.44 2.45 2.45 2.39 2.43 2.45

New Lower Error Estimator

= EFFICIENT




Where is the issue with the standard bubble function approach for short-edge
jump residual terms?

e Essentially, the edge bubble works as a cut-off function

e Its gradient is O(H ') on shape-regular meshes

\[S

C

~ 11

e For short edges on anis. meshes, the gradient of the edge bubble becomes O(h ')

-

~ 1

= an| “incorrect” H /h |in the resulting estimator

e Note: no issue for long edges, as [S|/(h~ ') ~ hH ~ local volume...




How we rectify this? (more detail)

e By looking at a patch of anisotropic elements

of width ~ H and total area ~ H?

= this allows us to use a cut-off function with a| “correct” gradient O(H ')

e Unlike the single-edge-setting, the short-edge /¢ changes within the patch, so
requires a more careful treatment...

e [t’s not a full story... (also have to take care of the long edges within the patch...)

e Overall, as the setting 1s more complex, so the proof 1s more complex as well...




How we rectify this? (more detail)

e Consider a partially structured mesh:

<

Li+1 L Li—1

Theorem [Short-edge jump residual terms]|

2

>, wslJg < Jun —ullfpq, + [ Hrose(fa; TR,

SeSn{z=z;}

Here |wg| ~ local volume  [Kopteva, preprint, 2017, §9]

e More general setting: in preparation

(the proof 1s complete for bothe = 1 and € « 1)




Why anisotropic meshes?

Section A

Perceptions & expectations t.b. adjusted for anisotropic meshes

Part O

Part 1

Part 2

Part 3

Section B

Standard residual-type estimators on shape-regular meshes;
their relation to interpolation errors

Recent a posteriori estimates on anisotropic meshes

A bit of analysis: 3 technical issues addressed...
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FINAL

Thank you!




RD eq, Anisotropic mesh:

L., norm

Our FIRST ESTIMATOR reduces to

fun = uloo < €6 max(minfe, B} [[Var]],., +min{1, 5} £l )

+ Clfu = filloo

C'is independent of the diameters and the aspect ratios of elements in 7, and of <.

Here f;, = f(-,un), N is the set of nodes in T, [Vu,] is the standard jump in
the normal derivative of u; across an element edge, w, is the patch of elements
surrounding any z € N/, +, is the set of edges in the interior of w,, H, = diam(w,),
(, = In(2 4+ eh™"), and h is the minimum height of triangles in 7T .

e For ¢ = 1, this gives a standard a posteriori error bound, similar to [Eriksson,
Nochetto, Nochetto et al], only now we prove it for anisotropic meshes.

e For ¢ € (0, 1], this is almost identical with our estimator for shape-regular case
(on the previous page), but now we assume no shape regularity of the mesh.




RD eq, Anisotropic mesh:

L norm | In order to give a sharper (and more anisotropic in nature) bound for

the interior-residual component of the error, we identify sequences of short edges

that connect anisotropic nodes: —
[

Under some additional assumptions on each such sequence (which we call a Path),
our SECOND ESTIMATOR

lup — ullo <C 4, [max (min{e, H.}
zeN

T )+ e (mingLe B2 Al )

+ max (min{e, H } min{e, h.}|e 2 fi oo, + min{l, e >H?} osc(f; wz))]

ZeNpaths
+C| fo = filosas

C'is independent of the diameters and the aspect ratios of elements in 7, and of <.

Here N5 iS the set of mesh nodes that appear in any path, h, ~ H, *|w,|, J, = [Vu]!




RD eq, Anisotropic mesh:

Energy norm

our FIRST ESTIMATOR reduces to

1/2
lun = ulle < €Y (min{1, 2} hoHelVanl[}, , + |min{1, £ £1]5.) )

zeN
+C| o — fill2sa,

C'is independent of the diameters and the aspect ratios of elements in 7, and of <.

Here f;, = f(:,un), N is the set of nodes in T, [Vu,] is the standard jump in
the normal derivative of u; across an element edge, w, is the patch of elements
surrounding any z € N/, ~, is the set of edges in the interior of w,, H, = diam(w,),
and h, ~ H |w.|.

e For ¢ = 1, this gives a standard a posteriori error bound, similar to [Babuska et
al], only now we prove it for anisotropic meshes.

e For ¢ € (0, 1], this is almost identical with our estimator for shape-regular case
[ Verfiirth], but now we assume no shape regularity of the mesh.




RD eq, Anisotropic mesh:

Energy norm | For a sharper ( bound for the interior-residual component of the

error, we again identify sequences of short edges that connect anisotropic nodes:

(——

Under some additional assumptions on each such sequence (which we call a Path),
our SECOND ESTIMATOR

lu = ull-0 < €4 G eV ¢ Y [min{L 2 £
zeN ZEMNpaths
+30 (Iwinfr, 2=} £l + Jmind1, 2 ose(flswn)]f.,, )|
ZENpaths
+CHfh_ff{H2;Qv

C'is independent of the diameters and the aspect ratios of elements in 7, and of <.

Here Npaths is the set of mesh nodes that appear in any path, A, ~ H_ 1 |w, |




