A POSTERIORI ERROR ESTIMATES ON ANISOTROPIC MESHES

Natalia Kopteva

University of Limerick, Ireland

II International conference
"Multiscale methods and Large-scale Scientific Computing"
INM RAS, Moscow, August 2018

• For singularly perturbed *semilinear reaction-diffusion* equations

$$-\varepsilon^2 \triangle u + f(x, u) = 0$$

where $x \in \Omega \subset \mathbb{R}^2$, subject to u = 0 on $\partial \Omega$

$$f(x,u) - f(x,v) \ge C_f[u-v]$$
 whenever $u \ge v$, $\varepsilon^2 + C_f \gtrsim 1$

we look for residual-type a posteriori error estimates

$$\|\text{error}\|_* \leq \text{function}(\text{mesh, comp.sol-n})$$

where $\|\cdot\|_*$ is the <u>maximum norm</u> or the *energy norm*

on anisotropic meshes

• To simplify the presentation, main focus will be on $\varepsilon = 1$ (so the energy norm becomes the H^1 norm); but similar results for $\varepsilon \ll 1...$

OUTLINE 2

Why anisotropic meshes?

Section A

Perceptions & expectations t.b. adjusted for anisotropic meshes

Section B

Part 0 Standard residual-type estimators on shape-regular meshes; their relation to interpolation errors

Part 1 Recent a posteriori estimates on anisotropic meshes

Part 2 A bit of analysis: 3 technical issues addressed...

Part 3 Some Numerics

Section C

Efficiency, i.e. lower estimator: also problematic on anisotropic meshes...

• Interpolation error bounds \Rightarrow

anisotropic meshes are superior for layer solutions

• anisotropic meshes are superior for layer solutions

BUT theoretical difficulties within the FEM framework...

- It's not just about working hard and tracking all the constants very carefully
- New tricks are required...

ALSO Perceptions and expectations t.b. adjusted for anisotropic meshes

One Perception: the computed-solution error in the maximum norm is closely related to the corresponding interpolation error...

• Quasi-uniform meshes, linear elements

$$||u - u_h||_{L_{\infty}(\Omega)} \le \ln(C + \varepsilon/h) \inf_{\chi \in S_h} ||u - \chi||_{L_{\infty}(\Omega)}$$

- Schatz, Wahlbin, On the quasi-optimality in L_{∞} of the \mathring{H}^1 -projection into finite element spaces, Math. Comp. 1982: $-\Delta u = f$,
- Schatz, Wahlbin, On the finite element method for singularly perturbed reaction-diffusion problems ..., Math. Comp., 1983: $-\varepsilon^2 \triangle u + au = f$,

One Perception: the computed-solution error in the maximum norm is closely related to the corresponding interpolation error...

• Quasi-uniform meshes, linear elements

$$||u - u_h||_{L_{\infty}(\Omega)} \le \ln(C + \varepsilon/h) \inf_{\chi \in S_h} ||u - \chi||_{L_{\infty}(\Omega)}$$

- Schatz, Wahlbin, On the quasi-optimality in L_{∞} of the \mathring{H}^1 -projection into finite element spaces, Math. Comp. 1982: $-\Delta u = f$,
- Schatz, Wahlbin, On the finite element method for singularly perturbed reaction-diffusion problems ..., Math. Comp., 1983: $-\varepsilon^2 \triangle u + au = f$,
- Strongly-anisotropic triangulations: no such result
 - BUT this is frequently considered a reasonable heuristic conjecture t.b. used in the anisotropic mesh adaptation (Hessian-related metrics...)
 - IN FACT, this is **NOT true** (see next)

Example: $-\varepsilon^2 \triangle u + u = 0$ with $u = e^{-x/\varepsilon}$ exhibiting a sharp boundary layer

Observation #1: Mass Lumping may be superior on anisotropic meshes

Here we use a Shishkin mesh: piecewise-uniform, $DOF \simeq N^2$, mesh diameter $\simeq N^{-1}$

$$||u - u^I||_{L_{\infty}(\Omega)} \simeq N^{-2} \ln^2 N \simeq DOF^{-1} \ln(DOF)$$

Same Example: $-\varepsilon^2 \triangle u + u = 0$ with $u = e^{-x/\varepsilon}$ exhibiting a sharp boundary layer

Observation #2: Convergence Rates may depend on the mesh structure (even for mass lumping), NOT ONLY on the interpolation error

Here we use a graded Bakhvalov mesh:

$$||u - u^I||_{L_{\infty}(\Omega)} \simeq N^{-2} \simeq DOF^{-1}$$

What happens in $\Omega := (0, 2\varepsilon) \times (-H, H)$ with the tensor-product mesh $\mathring{\omega}_h := \{x_i = \varepsilon \frac{i}{N_0}\}_{i=0}^{2N_0} \times \{-H, 0, H\}$??

 \mathcal{T} in Ω :

 \mathcal{T}_0 in $\Omega_0 \subset \Omega$:

Mass lumping, $U_i := u_h(x_i, 0)$ and $U_i^{\pm} := u_h(x_i, \pm H)$:

$$\frac{\varepsilon^2}{h^2} \left[-U_{i-1} + 2U_i - U_{i+1} \right] + \frac{\varepsilon^2}{H^2} \left[-U_i^- + 2U_i - U_i^+ \right] + \gamma_i U_i = 0$$

with $\gamma_i = 1$ for $i \neq N_0$, and $\gamma_{N_0} = \frac{2}{3}$

$$\varepsilon \ll \mathbf{H} \implies \frac{\varepsilon^2}{h^2} [-U_{i-1} + 2U_i - U_{i+1}] + \frac{\varepsilon^2}{H^2} [-U_i^- + 2U_i - U_i^+] + \gamma_i U_i = 0$$

IMPLICATIONS 10

Implications of the above example:

• Theoretical:

if one tries to prove "standard" (almost) second-order a priori/a posteriori error estimate in the maximum norm on a general anisotropic mesh, this may be impossible...

• Anisotropic mesh adaptation (Hessian-related metrics...):

One needs to be careful with the heuristic conjecture that the computed-solution error in the maximum norm is closely related to the corresponding interpolation error...

Non-singularly-perturbed EXAMPLE [Nochetto et al, Numer. Math., 2006]:

$$-\Delta u + f(u) = 0$$
 with $f(u) \sim -u^{-3}$ and $u = \sqrt{x}$

Graded mesh: $\{(i/N)^6\}_{i=0}^N$:

$$||u - u^I||_{L_{\infty}(\Omega)} \simeq N^{-2} \simeq DOF^{-1}$$

Mesh transition parameter: $\epsilon = 0.1$

Why anisotropic meshes?

Section A

Perceptions & expectations t.b. adjusted for anisotropic meshes

Section B

- Part 0 Standard residual-type estimators on shape-regular meshes; their relation to interpolation errors
- Part 1 Recent a posteriori estimates on anisotropic meshes
- Part 2 A bit of analysis: 3 technical issues addressed...
- Part 3 Some Numerics

Section C

Efficiency, i.e. lower estimator: also problematic on anisotropic meshes...

Laplace equation $-\triangle u = f(x)$, linear elements, shape-regular mesh [Ainsworth & Oden, 2000, Chap. 2]

• H^1 norm [Babuška & Miller, 1987]

$$||u_{h} - u||_{H^{1}(\Omega)} \lesssim \left\{ \sum_{T \in \mathcal{T}} \left(\underbrace{||h_{T} f||_{L_{2}(T)}^{2}}_{\sim ||h_{T} \triangle u||_{L_{2}(T)}^{2}} + \underbrace{|h_{T}^{2} ||[\nabla u_{h}]||_{L_{\infty}(\partial T)}^{2}}_{\sim ||h_{T} D^{2} u||_{L_{2}(T)}^{2}} \right) \right\}^{1/2}$$

$$\sim \|h_T D^2 u\|_{L_2(\Omega)} \sim \|\text{linear interpolation error}\|_{H^1(\Omega)}$$

Laplace equation $-\triangle u = f(x)$, linear elements, shape-regular mesh

[Ainsworth & Oden, 2000, Chap. 2]

• H^1 norm [Babuška & Miller, 1987]

$$||u_{h} - u||_{H^{1}(\Omega)} \lesssim \left\{ \sum_{T \in \mathcal{T}} \left(\underbrace{||h_{T} f||_{L_{2}(T)}^{2}}_{\sim ||h_{T} \triangle u||_{L_{2}(T)}^{2}} + \underbrace{|h_{T}^{2} ||[\nabla u_{h}]||_{L_{\infty}(\partial T)}^{2}}_{\sim ||h_{T} D^{2} u||_{L_{2}(T)}^{2}} \right) \right\}^{1/2}$$

$$\sim \|h_T D^2 u\|_{L_2(\Omega)} \sim \|\text{linear interpolation error}\|_{H^1(\Omega)}$$

 L_{∞} norm [Eriksson, 1994], [Nochetto, 1995]

$$\|u_{h} - u\|_{L_{\infty}(\Omega)} \lesssim \ln(h_{\min}^{-1}) \max_{T \in \mathcal{T}} \left\{ \underbrace{h_{T}^{2} \|f\|_{L_{\infty}(T)}}_{\sim h_{T}^{2} \|\triangle u\|_{L_{\infty}(T)}} + \underbrace{h_{T} \|\nabla u_{h}\|_{L_{\infty}(\partial T)}}_{\sim h_{T}^{2} \|D^{2}u\|_{L_{\infty}(T)}} \right\}$$

$$\sim \|h_T^2 D^2 u\|_{L_{\infty}(\Omega)} \sim \|\text{linear interpolation error}\|_{L_{\infty}(\Omega)}$$

Laplace equation $-\triangle u = f(x)$, linear elements, shape-regular mesh:

• In the H^1 and L_{∞} norms:

```
\| \operatorname{error} \|_{*} \le \operatorname{function}(\operatorname{mesh}, \operatorname{comp.solution})
\sim \| \operatorname{linear\ interpolation\ error} \|_{*}
\operatorname{discrete\ analogue}
```

• Higher-order elements + other norms + other equations have been considered as well.

• <u>PURPOSE</u> of such bounds: to be used in the automatic mesh adaptation...

 $-\varepsilon^2 \triangle u + f(x,u) = 0$, shape-regular mesh, any-order FEM, also analogous lower bounds...

• Energy norm $\| \operatorname{error} \|_{\varepsilon;\Omega} := \varepsilon \| \nabla \operatorname{error} \|_{L_2(\Omega)} + \| \operatorname{error} \|_{L_2(\Omega)}$ [Verfürth, Numer. Math., 1998, $-\varepsilon^2 \Delta u + u = f(x)$], for linear FEs:

$$\left\{ \sum_{T \in \mathcal{T}} \left(\underbrace{\|\min\{1, \frac{h_T}{\varepsilon}\} f(\cdot, u_h)\|_{L_2(T)}^2}_{\sim \|\varepsilon h_T \triangle u\|_{L_2(T)}^2} + \min\{1, \frac{\varepsilon}{h_T}\} \underbrace{h_T^2 \|\varepsilon [\![\nabla u_h]\!]\|_{L_\infty(\partial T)}^2}_{\sim \|\varepsilon h_T D^2 u\|_{L_2(T)}^2} \right) \right\}^{1/2}$$

 $-\varepsilon^2 \triangle u + f(x,u) = 0$, shape-regular mesh, any-order FEM, also analogous lower bounds...

• Energy norm $\| \operatorname{error} \|_{\varepsilon;\Omega} := \varepsilon \| \nabla \operatorname{error} \|_{L_2(\Omega)} + \| \operatorname{error} \|_{L_2(\Omega)}$ [Verfürth, Numer. Math. 1998, $-\varepsilon^2 \Delta u + u = f(x)$], for linear FEs:

$$\left\{ \sum_{T \in \mathcal{T}} \left(\underbrace{\|\min\{1, \frac{h_T}{\varepsilon}\} f(\cdot, u_h)\|_{L_2(T)}^2}_{\sim \|\varepsilon h_T \triangle u\|_{L_2(T)}^2} + \min\{1, \frac{\varepsilon}{h_T}\} \underbrace{h_T^2 \|\varepsilon [\nabla u_h]\|_{L_2(T)}^2}_{\sim \|\varepsilon h_T D^2 u\|_{L_2(T)}^2} \right) \right\}^{1/2}$$

• L_{∞} norm [Demlow & Kopteva, Numer. Math. 2015], for linear FEs:

$$\max_{T \in \mathcal{T}} \left\{ \min \left\{ 1, \ell_h \frac{h_T^2}{\varepsilon^2} \right\} \underbrace{\| f(\cdot, u_h) \|_{L_{\infty}(T)}}_{\sim \varepsilon^2 |\triangle_h u_h| + O(h_T^2)} + \min \left\{ \varepsilon, \ell_h h_T \right\} \underbrace{\| [\nabla u_h] \|_{L_{\infty}(\partial T)}}_{\sim h_T |D^2 u|} \right\}$$

$$\text{where } \ell_h = \ln(2 + \varepsilon h_{\min}^{-1})$$

$$-\varepsilon^2 \triangle u + f(x, u) = 0$$
, ANISOTROPIC mesh:

• L_{\infty} norm [Kopteva, SIAM J. Numer. Anal., 2015, new for $\varepsilon = 1$ and $\varepsilon \ll 1$]

$-\varepsilon^2 \triangle u + f(x, u) = 0$, ANISOTROPIC mesh:

- \mathbf{L}_{∞} **norm** [Kopteva, SIAM J. Numer. Anal., 2015, **new for** $\varepsilon = 1$ and $\varepsilon \ll 1$]
- Energy norm $\|\operatorname{error}\|_{\varepsilon;\Omega} = \varepsilon \|\nabla \operatorname{error}\|_{L_2(\Omega)} + \|\operatorname{error}\|_{L_2(\Omega)}$
- [Kunert, Kunert & Verfürth, Numer. Math., 2000, $-\triangle u = f(x), -\varepsilon^2 \triangle u + u = f(x)$]

ISSUE: the error constant involves the so-called *matching function* $m(u-u_h, \mathcal{T})$, which may be as large as the mesh aspect ratio $\frac{H_T}{h_T}$,

which is UNDESIRABLE...

......

— [Kopteva, Numer. Math., 2017, **new for** $\varepsilon = 1$ and $\varepsilon \ll 1$]

extends the framework of [Kopteva, SIAM J. Numer. Anal., 2015]

from the L_{∞} to the energy norm... (NO matching functions!)

Energy norm

For $\varepsilon = 1$, linear FEM, our ESTIMATOR reduces to

$$\|u_h - u\|_{H^1(\Omega)} \le C \left\{ \sum_{z \in \mathcal{N}} h_z H_z \| \llbracket \nabla u_h \rrbracket \|_{\infty;\gamma_z}^2 \right\}^{1/2} + \text{interior-residual terms}$$

C is independent of the diameters and the aspect ratios of elements in \mathcal{T} .

Here $f_h = f(\cdot, u_h)$, \mathcal{N} is the set of nodes in \mathcal{T} , $\llbracket \nabla u_h \rrbracket$ is the standard jump in the normal derivative of u_h across an element edge, ω_z is the patch of elements surrounding any $z \in \mathcal{N}$, γ_z is the set of edges in the interior of ω_z , $H_z = \operatorname{diam}(\omega_z)$, and $h_z H_z \sim |\omega_z| = \operatorname{local}$ volume.

- For $\varepsilon = 1$, this gives a standard a posteriori error bound, similar to [Babuška et al], only now we prove it for anisotropic meshes.
- Relation to interpolation error bounds: $|[\![\nabla u_h]\!]|$ may be interpreted as approximating the diameter of ω_z under the metric induced by the squared Hessian matrix of the exact solution.

Roughly speaking, want to include meshes of the type:

• Permitted mesh node types:

Notation: $H_T := \operatorname{diam}(T), h_T := 2H_T^{-1}|T|, H_z := \operatorname{diam}(\omega_z), h_z := \max_{T \subset \omega_z} h_T$

Main Triangulation Assumptions:

- Maximum Angle condition.
- Local Element Orientation condition. For any $z \in \mathcal{N}$, with the patch ω_z of elements surrounding z, there is a rectangle $R_z \supset \omega_z$ such that $|R_z| \sim |\omega_z|$.
- Also let the number of triangles containing any node be uniformly bounded.

Mesh Node Types:

Standard Steps:

- Error representation via Green's function $G(L_{\infty} \text{ norm})$ or similar (energy norm)
- Use Galerkin orthogonality to replace G by $G G_h$
- Apply the Divergence Theorem ⇒ the error bound includes
 <u>Jump Residual</u> terms (∑ integrals over mesh edges)
 <u>Interior Residual</u> terms (∑ integrals over mesh elements)

3 technical issues t.b. addressed:

- 1. Application of a Scaled Trace theorem when estimating the Jump Residual ("long" edges cause problems...)
- 2. Shaper bounds for the Interior Residual (by identifying connected paths of anisotropic nodes...)
- 3. Quasi-interpolants (of Clément/Scott-Zhang type) are not readily available for general anisotropic meshes [Apel, Chapt. III]...(may be of independent interest)

• For a solution u and any $u_h \in H_0^1(\Omega) \cap W_1^q(\Omega)$ with q > n = 2,

$$[u_h - u](x) = \varepsilon^2(\nabla u_h, \nabla G(x, \cdot)) + (f(\cdot, u_h), G(x, \cdot))$$

HINT: using the standard linearization $f(x, u_h) - f(x, u) = p(x)[u_h - u]$ with $p = \int_0^1 f_u(\cdot, u + [u_h - u]s) \, ds \ge C_f \ge 0$

• For each fixed $x \in \Omega$, the Green's function $G = G(x, \cdot)$ solves the problem

$$L^*G = -\varepsilon^2 \Delta_{\xi} G + p(\xi) G = \delta(x - \xi), \qquad \xi \in \Omega,$$

$$G(x; \xi) = 0, \qquad \xi \in \partial \Omega.$$

(NOTE: similar to the dual problem...)

• For a solution u and any $u_h \in H_0^1(\Omega) \cap W_1^q(\Omega)$ with q > n = 2,

$$u_h - u = \varepsilon^2(\nabla u_h, \nabla G) + (f(\cdot, u_h), G)$$

• THEOREM [Demlow, Kopteva, 2015] For any $x \in \Omega$,

$$||G(x,\cdot)||_{1;\Omega} + \varepsilon ||\nabla G(x,\cdot)||_{1;\Omega} \lesssim 1.$$

For the ball $B(x,\varrho)$ of radius ϱ centered at $x \in \Omega$, and $\ell_{\varrho} := \ln(2 + \varepsilon \varrho^{-1})$,

$$||G(x,\cdot)||_{1,B(x,\varrho)\cap\Omega} \lesssim \varepsilon^{-2}\varrho^{2}\ell_{\varrho},$$

$$||\nabla G(x,\cdot)||_{1,B(x,\varrho)\cap\Omega} \lesssim \varepsilon^{-2}\varrho,$$

$$||D^{2}G(x,\cdot)||_{1,\Omega\setminus B(x,\varrho)} \lesssim \varepsilon^{-2}\ell_{\varrho}$$

• For a solution u and $\underline{\text{any}}\ u_h \in H^1_0(\Omega) \cap W^q_1(\Omega)$ with q > n = 2, using the monotonicity of f and $C_f + \varepsilon^2 \ge 1$, one gets

$$|||u_h - u|||_{\varepsilon;\Omega}^2 \lesssim \varepsilon^2 \langle \nabla(u_h - u), \nabla(u_h - u) \rangle + \langle f(\cdot; u_h) - f(\cdot; u), u_h - u \rangle$$
$$= \varepsilon^2 \langle \nabla u_h, \nabla(u_h - u) \rangle + \langle f(\cdot; u_h), u_h - u \rangle,$$

where we also used $-\varepsilon^2 \triangle u + f(x, u) = 0$.

Next, assuming $||u_h - u||_{\varepsilon;\Omega} > 0$, let

$$G := \frac{u_h - u}{\|u_h - u\|_{\varepsilon;\Omega}} \qquad \Rightarrow \qquad \|G\|_{\varepsilon;\Omega} = 1$$

$$\Rightarrow \| \|u_h - u\|_{\varepsilon;\Omega} \lesssim \varepsilon^2 \langle \nabla u_h, \nabla G \rangle + \langle f(\cdot, u_h), G \rangle$$

— similar to the case of L_{∞} norm, only G is no longer the Green's function...

NEXT:
$$||u_h - u||_{\dots} = \varepsilon^2(\nabla u_h, \nabla (G - G_h)) + (f_h, G - G_h) \quad \forall G_h \in S_h$$

NEXT:
$$||u_h - u||_{\dots} = \varepsilon^2(\nabla u_h, \nabla (G - G_h)) + (f_h, G - G_h)| \forall G_h \in S_h$$

NOTE: by the **Divergence Theorem** for each $T \subset \mathcal{T}$,

$$\int_{T} \nabla u_h \cdot \nabla (G - G_h)) = \int_{\partial T} (G - G_h)) \nabla u_h \cdot \nu - \int_{T} \Delta u_h (G - G_h))$$
SO

$$||u_h - u||_{\dots} = \sum_{S \in \mathcal{S}} \varepsilon^2 \int_S (G - G_h) [\![\nabla u_h]\!] \cdot \nu + \sum_{T \in \mathcal{T}} \int_T (f_h - \varepsilon^2 \underbrace{\triangle u_h}) (G - G_h)$$

NEXT:
$$||u_h - u||_{\dots} = \varepsilon^2(\nabla u_h, \nabla (G - G_h)) + (f_h, G - G_h)| \forall G_h \in S_h$$

NOTE: by the **Divergence Theorem** for each $T \subset \mathcal{T}$,

$$\int_{T} \nabla u_h \cdot \nabla (G - G_h) = \int_{\partial T} (G - G_h) \nabla u_h \cdot \nu - \int_{T} \Delta u_h (G - G_h)$$
SO

$$||u_h - u||_{\dots} = \sum_{S \in \mathcal{S}} \varepsilon^2 \int_S (G - G_h) [\![\nabla u_h]\!] \cdot \nu + \sum_{T \in \mathcal{T}} \int_T (f_h - \varepsilon^2 \underbrace{\Delta u_h}) (G - G_h)$$

As
$$\forall G_h \in S_h$$
, so replace $(G - G_h)$ by

$$G - G_h - \sum_{z \in \mathcal{N}} \bar{g}_z \phi_z = \sum_{z \in \mathcal{N}} [G - G_h - \bar{g}_z] \phi_z$$

where ϕ_z = the standard hat function associated with a node z

$$||u_h - u||_{\dots} = \sum_{z \in \mathcal{N}} \varepsilon^2 \int_{\gamma_z} \left[G - G_h - \overline{g}_z \right] \phi_z [\![\nabla u_h]\!] \cdot \nu + \sum_{z \in \mathcal{N}} \int_{\omega_z} f_h \left[G - G_h - \overline{g}_z \right] \phi_z$$

$$\underline{\text{JUMP RESIDUAL:}} \quad I := \sum_{z \in \mathcal{N}} \varepsilon^2 \int_{\gamma_z} \left[G - G_h - \bar{g}_z \right] \phi_z \left[\nabla u_h \right] \cdot \nu \quad (\int \text{over } \underline{\text{edges}})$$

NOTE: An inspection of standard proofs for shape-regular meshes reveals that one obstacle in extending them to anisotropic meshes lies in the application of a Scaled **Trace Theorem** when estimating the jump residual terms (this causes the mesh aspect ratios to appear in the estimator; "long" edges cause this problem).

Scaled Trace Theorem (for anisotropic elements; sharp):

$$\max_{S \in \{\text{short edges}\}} \|v\|_{1;S} + \frac{\mathbf{h}_{\mathbf{z}}}{\mathbf{H}_{\mathbf{z}}} \max_{S \in \{\text{long edges}\}} \|v\|_{1;S} \lesssim H_z^{-1} \|v\|_{1;\omega_z} + \|\nabla v\|_{1;\omega_z}$$

$$\underline{\text{JUMP RESIDUAL:}} \quad I := \sum_{z \in \mathcal{N}} \varepsilon^2 \int_{\gamma_z} \left[G - G_h - \bar{g}_z \right] \phi_z \llbracket \nabla u_h \rrbracket \cdot \nu$$

NOTE: An inspection of standard proofs for shape-regular meshes reveals that one obstacle in extending them to anisotropic meshes lies in the application of a Scaled **Trace Theorem** when estimating the jump residual terms (this causes the mesh aspect ratios to appear in the estimator; "long" edges cause this problem).

<u>NOTE</u> standard choices: $|\bar{g}_z = 0|$, or $|\int_{\omega_z} (G - G_h - \bar{g}_z) \phi_z = 0|$ [Nochetto].

Our CHOICE is crucial in addressing this difficulty:

$$\int_{\xi_z^-}^{\xi_z^+} \left[(G - G_h)(\xi, \bar{\eta}_z(\xi)) - \bar{g}_z \right] \varphi_z(\xi) d\xi = 0$$

In order to give a sharper (and more anisotropic in nature) bound for the interior-residual component of the error, we identify sequences of short edges that connect anisotropic nodes (and call each of them a Path):

Main Additional Assumption:

(Curvilinear version also ok...)

• Path Coordinate-System condition. For each (semi-)anisotropic path \mathcal{N}_i , $i=1,\ldots,n_{\mathrm{ani}}+n_{\mathrm{s.ani}}$, let there exist a cartesian coordinate system $(\xi,\eta)=(\xi_i,\eta_i)$ such that $|\sin(\angle(S,\mathbf{i}_\xi))|\lesssim \frac{h_z}{|S|}$ for any $S\subset\mathcal{S}_z$ of any node $z\in\mathcal{N}_i$ (while, if \mathcal{N}_i is semi-anisotropic a stronger condition $|\angle(S,\mathbf{i}_\xi)|\lesssim \frac{h_z}{|S|}$ is satisfied).

TASK: estimate

$$\bar{\Theta} := \varepsilon^2 \sum_{T \in \mathcal{T}} \left(\lambda_T^{p-2} \| \nabla (G - G_h) \|_{p;T}^p + \lambda_T^{-2} \| G - G_h \|_{p;T}^p \right), \ \lambda_T := \min\{\varepsilon, H_T\},$$

$$\underline{\text{Aim:}} \quad \bar{\Theta} \lesssim \ell_h \quad \text{for } p = 1 \text{ for } L_\infty \text{ norm, or } \bar{\Theta} \lesssim 1 \quad \text{for } p = 2...$$

• It would be convenient to employ a quasi-interpolant (of Clément/Scott-**Zhang type**) with the property

$$|G - G_h|_{k,p;T} \lesssim H_T^{j-k}|G|_{j,p;\omega_T}$$
 for any $0 \leqslant \lceil \frac{k \leqslant j}{\rceil} \leqslant 2, \ p = 1.$

T.b. more precise, the estimator involves
$$\min\{\underbrace{1},\underbrace{\frac{H_T^2}{\varepsilon^2}}\}$$
 from $k=j$ from $k< j$

• However, such interpolants are not readily available for general anisotropic meshes (see [Apel, Chapt. III] for a discussion of Scott-Zhang-type interpolation on anisotropic tensor-product meshes).

• It would be convenient to employ a quasi-interpolant (of Clément/Scott-Zhang type) with the property

$$|G - G_h|_{k,p;T} \lesssim H_T^{j-k}|G|_{j,p;\omega_T}$$
 for any $0 \leqslant \left| k \leqslant j \right| \leqslant 2, \ p = 1.$

- However, such interpolants are not readily available for anisotropic meshes
- To deal with the <u>maximum norm</u> [Kopteva, 2015]:

Because of this difficulty, we employ a less standard interpolant G_h , which gives a version of the **Lagrange interpolant** whenever $H_T \lesssim \varepsilon$, and vanishes whenever $H_T \gtrsim \varepsilon$; however, this construction requires additional mild assumptions on the triangulation...

• To deal with the energy norm [Kopteva, 2017]:

Quasi-interpolant of Clément/Scott-Zhang type are introduced on anisotropic meshes...

Simple 2d TEST problem:
$$-\varepsilon^2 \triangle u + u = F(x)$$
 in $\Omega = (0, 1)^2$ with $\varepsilon^2 = 10^{-6}$, $u = 4y (1-y) [1-x^2-(e^{-x/\varepsilon}-e^{-1/\varepsilon})/(1-e^{-x/\varepsilon})]$

We consider one a-priori-chosen layer-adapted mesh of Bakhvalov type:

- The mesh is chosen so that the linear interpolation error $||u u^I||_{\infty;\Omega} \lesssim N^{-2}$.
- However, as $\varepsilon \to 0$, the convergence rates deteriorate from 2 to 1.

This phenomenon is noted and explained in

[N. Kopteva, Linear finite elements may be only first-order pointwise accurate on anisotropic triangulations, Math. Comp. 2014.].

	1		_
Tololor Dolrhyrolory mag			over one distributions
Table, Bakhvalov me	$\sin N = -N$	maximiimi noosi	errors and estimators.
Tuoto. Duitii vaio viiito	011, 111	maximum modul	off of build obtilitiators.

	146101 24111	111001	$\frac{1}{2}$, $\frac{1}{2}$		110 0101 011 01	S corres of corrections	<u></u>
N	$\varepsilon = 1$	$\varepsilon = 2^{-5}$	$\varepsilon = 2^{-10}$	$\varepsilon = 2^{-15}$	$\varepsilon = 2^{-20}$	$\varepsilon = 2^{-25}$	$\varepsilon = 2^{-30}$
	Errors (odd	d rows) & C	Computational	Rates (even 1	rows)		
64	3.373e-4	3.723e-3	8.952e-3	8.973e-3	8.973e-3	8.973e-3	8.973e-3
	2.00	1.91	1.01	1.00	1.00	1.00	1.00
128	8.445e-5	9.935e-4	4.446e-3	4.484e-3	4.484e-3	4.484e-3	4.484e-3
	2.00	1.98	1.04	1.00	1.00	1.00	1.00
256	2.112e-5	2.523e-4	2.165e-3	2.236e-3	2.236e-3	2.236e-3	2.236e-3
	FIRST Est	imator (odd 1	rows) & Effe	ectivity Indic	es (even rows)	
64	6.810e-3	2.516e-1	9.403e-1	9.981e-1	9.999e-1	1.000e+0	1.000e+0
	20.19	67.59	105.04	111.23	111.44	111.45	111.45
128	1.761e-3	1.120e-1	8.858e-1	9.961e-1	9.999e-1	1.000e+0	1.000e+0
	20.86	112.72	199.26	222.15	222.98	223.01	223.01
256	4.480e-4	4.036e-2	7.901e-1	9.922e-1	9.998e-1	1.000e+0	1.000e+0
	21.21	159.97	365.01	443.82	447.17	447.27	447.28
	21.21	159.97	365.01	443.82	447.17	447.27	447.28

	1			
Table: Bakhvalov mesh, I	\ <i>T</i> 7\T.] .]	14! 4
Table, Bakhvalov mesh /	$VI = \tilde{-}/V$	maximiim n	innai errarç	and estimators
Table. Dakii valov iliesii, 1	$v_1 - c_1 v_1$	III GAIIII GIII I	iouai ciiois	and Commators.

	Table. Dak	nvaiov mes.	11, 111 211	· maximum	modul ciro	is and estim	ators.
N	$\varepsilon = 1$	$\varepsilon = 2^{-5}$	$\varepsilon = 2^{-10}$	$\varepsilon = 2^{-15}$	$\varepsilon = 2^{-20}$	$\varepsilon = 2^{-25}$	$\varepsilon = 2^{-30}$
	Errors (ode	d rows) & C	Computational	Rates (even	rows)		
64	3.373e-4	3.723e-3	8.952e-3	8.973e-3	8.973e-3	8.973e-3	8.973e-3
	2.00	1.91	1.01	1.00	1.00	1.00	1.00
128	8.445e-5	9.935e-4	4.446e-3	4.484e-3	4.484e-3	4.484e-3	4.484e-3
	2.00	1.98	1.04	1.00	1.00	1.00	1.00
256	2.112e-5	2.523e-4	2.165e-3	2.236e-3	2.236e-3	2.236e-3	2.236e-
	SECOND	Estimator (o	dd rows) & 1	Effectivity In	dices (even ro	ows)	
64	7.353e-3	1.204e-1	1.224e-1	1.230e-1	1.302e-1	1.302e-1	1.302e-
	21.80	32.33	13.68	14.48	14.51	14.51	14.5
128	1.885e-3	3.212e-2	6.005e-2	6.621e-2	6.646e-2	6.647e-2	6.647e-2
	22.32	32.33	13.51	14.77	14.82	14.82	14.82
256	4.771e-4	8.268e-3	3.073e-2	3.328e-2	3.354e-2	3.354e-2	3.354e-2
	22.59	32.77	14.20	14.89	15.00	15.00	15.0

We considered one a-priori-chosen layer-adapted mesh of Bakhvalov type:

maximum nodal errors

- The mesh is chosen so that the linear interpolation error $||u u^I||_{\infty,\infty} \lesssim N^{-2}$.
- However, as $\varepsilon \to 0$, the convergence rates deteriorate from 2 to 1.
- E.g., for the final choice of ε and N, the **aspect ratios** of the mesh elements take values **between 1 and 3.6e+8**.
- Considering these variations, the SECOND estimator performs reasonably well and its effictivity indices stabilize as $\varepsilon \to 0$.
- By contrast, the FIRST estimator is adequate for $\varepsilon \sim 1$, but its effectivity deteriorates in the singularly perturbed regime.

NOTE	for $\varepsilon \ll 1$	$: \ u_h - c\ $	$u^I\ _{2;\Omega} \simeq \varepsilon$	$\varepsilon \ \nabla u_h - ($	$\nabla u)^I\ _{2;\Omega}$	$\simeq \varepsilon^{1/2} N^{-1}$	1
	3.19	4.09	5.04	5.29	5.30	5.30	5.30
256	2.559e-2	5.269e-3	1.006e-3	1.858e-4	3.290e-5	5.817e-6	1.028e-6
	3.21	4.10	5.14	5.28	5.29	5.29	5.29
128	5.147e-2	1.051e-2	2.050e-3	3.711e-4	6.566e-5	1.161e-5	2.052e-6
	3.25	4.14	5.17	5.25	5.25	5.25	5.25
64	1.041e-1	2.102e-2	4.129e-3	7.393e-4	1.308e-4	2.311e-5	4.086e-6
	SECOND	Estimator (o	dd rows) & 1	Effectivity In	dices (even ro	ows)	
256	8.011e-3	1.289e-3	1.997e-4	3.511e-5	6.207e-6	1.097e-6	1.940e-7
	1.00	0.99	1.00	1.00	1.00	1.00	1.00
128	1.602e-2	2.564e-3	3.991e-4	7.028e-5	1.242e-5	2.196e-6	3.882e-7
	1.00	0.99	1.00	1.00	1.00	1.00	1.00
64	3.202e-2	5.081e-3	7.993e-4	1.408e-4	2.489e-5	4.399e-6	7.777e-7
	Errors (odd	d rows) & C	Computational	Rates (even 1	rows)		
N	$\varepsilon = 1$	$\varepsilon = 2^{-5}$	$\varepsilon = 2^{-10}$	$\varepsilon = 2^{-15}$	$\varepsilon = 2^{-20}$	$\varepsilon = 2^{-25}$	$\varepsilon = 2^{-30}$

Simple 2d TEST problem:
$$-\varepsilon^2 \triangle u + u = F(x)$$
 in $\Omega = (0, 1)^2$ with $\varepsilon^2 = 10^{-6}$, $u = 4y (1-y) \left[1-x^2-(e^{-x/\varepsilon}-e^{-1/\varepsilon})/(1-e^{-x/\varepsilon})\right]$

Maximum errors for $\varepsilon = 10^{-4}$ and initial DOF varied (left), and ε varied (right):

In each experiment, we started with a uniform mesh of right-angled triangles of diameter H_T 2^{-8} , 2^{-16} , 2^{-32} , and aspect ratio $\frac{H_T}{h_T} = 2$. At each iteration, we marked for refinement the mesh elements responsible for at least 5% of the overall estimator \mathcal{E} , but no more than 15% of the elements. The marked elements were refined only in the x direction using a single or triple green refinement (depending on the orientation of the mesh element). Edge swapping was also employed to improve geometric properties of the mesh and/or possibly reduce $\max_{T \in \mathcal{T}} \{ \operatorname{osc}(f_h^I; T) \}$.

Why anisotropic meshes?

Section A

Perceptions & expectations t.b. adjusted for anisotropic meshes

Section B

- Part 0 Standard residual-type estimators on shape-regular meshes; their relation to interpolation errors
- Part 1 Recent a posteriori estimates on anisotropic meshes
- Part 2 A bit of analysis: 3 technical issues addressed...
- Part 3 Some Numerics

Section C

Efficiency, i.e. lower estimator: also problematic on anisotropic meshes...

Lower Error Estimators on anisotropic meshes in the energy norm???

(consistent with upper estimators?)

Standard Bubble Function Approach

This approach was employed by [Kunert & Verfürth 2000, Kunert 2001]: let $\varepsilon = 1$,

$$\underline{\mathcal{E}} := \left\{ \sum_{S \in \mathcal{S} \setminus \partial \Omega} \varrho_S J_S^2 + \|h_T f_h^I\|_{\Omega}^2 \right\}^{1/2} \lesssim \|u_h - u\|_{H^1(\Omega)} + \|h_T (f_h - f_h^I)\|_{\Omega},$$

For
$$S = \partial T_1 \cap \partial T_2$$
: $\varrho_S = |S| \min\{h_{T_1}, h_{T_2}\}$

We give a numerical example (for $\varepsilon = 1$) that clearly demonstrates that short-edge jump residual terms in such bounds are not sharp

Lower Error Estimators on anisotropic meshes in the energy norm???

(consistent with upper estimators?)

Standard Bubble Function Approach

This approach was employed by [Kunert & Verfürth 2000, Kunert 2001]: let $\varepsilon = 1$,

$$\underline{\mathcal{E}} := \left\{ \sum_{S \in \mathcal{S} \setminus \partial \Omega} \varrho_S J_S^2 + \|h_T f_h^I\|_{\Omega}^2 \right\}^{1/2} \lesssim \|u_h - u\|_{H^1(\Omega)} + \|h_T (f_h - f_h^I)\|_{\Omega},$$

For
$$S = \partial T_1 \cap \partial T_2$$
: $\varrho_S = |S| \min\{h_{T_1}, h_{T_2}\}$

We give a numerical example (for $\varepsilon = 1$) that clearly demonstrates that short-edge jump residual terms in such bounds are not sharp

• So, under additional restrictions on the anisotropic mesh, we shall give a **new** bound for the short-edge jump residual terms, and thus show that at least for some anisotropic meshes the error estimator constructed in the paper is efficient.

For
$$\varepsilon = 1$$
 and $S = \partial T_1 \cap \partial T_2$:

For
$$\varepsilon = 1$$
 and $S = \partial T_1 \cap \partial T_2$: $\varrho_S = |T_1 \cup T_2| = \text{local volume}$

	a = 1			a = 3	a = 3		
	N = 20	N = 40	N = 80	N = 20	N = 40	N = 80	
	Errors $ u_h $	$-u\ _{H^1(\Omega)}$					
M = 2N	1.01e-1	5.04e-2	2.52e-2	9.26e-1	4.56e-1	2.27e-1	
M = 8N	1.01e-1	5.04e-2	2.52e-2	9.26e-1	4.56e-1	2.27e-1	
M = 32N	1.01e-1	5.04e-2	2.52e-2	9.26e-1	4.56e-1	2.27e-1	
M = 128N	1.01e-1	5.04e-2	2.52e-2	9.26e-1	4.56e-1	2.27e-1	
	$\underline{\mathcal{E}}$ with ϱ_{S}	$= S \min\{h$	T_1, h_{T_2} (odd	rows) & Effect	ivity Indices ((even rows)	
M = 2N	2.89e-1	1.45e-1	7.24e-2	2.51e+0	1.26e+0	6.33e-1	
	2.87	2.88	2.88	2.72	2.78	2.79	
M = 8N	1.32e-1	6.59e-2	3.30e-2	1.17e+0	5.86e-1	2.93e-1	
	1.31	1.31	1.31	1.26	1.29	1.29	
M = 32N	6.27e-2	3.14e-2	1.57e-2	5.62e-1	2.82e-1	1.41e-1	
	0.62	0.62	0.62	0.61	0.62	0.62	
M = 128N	3.10e-2	1.55e-2	7.75e-3	2.79e-1	1.39e-1	6.97e-2	
	0.31	0.31	0.31	0.30	0.31	0.31	

 $\textbf{Standard Bubble Function Approach} \quad \Rightarrow \textbf{Lower Estimator NOT SHARP}$

	a = 1			a = 3		
	N = 20	N = 40	N = 80	N = 20	N = 40	N = 80
	Errors $ u_h $	$-u\ _{H^1(\Omega)}$				
M = 2N	1.01e-1	5.04e-2	2.52e-2	9.26e-1	4.56e-1	2.27e-1
M = 8N	1.01e-1	5.04e-2	2.52e-2	9.26e-1	4.56e-1	2.27e-1
M = 32N	1.01e-1	5.04e-2	2.52e-2	9.26e-1	4.56e-1	2.27e-1
M = 128N	1.01e-1	5.04e-2	2.52e-2	9.26e-1	4.56e-1	2.27e-1
	$\underline{\mathcal{E}}$ with ϱ_{S}	$= T_1 \cup T_2 $	(odd rows) &	Effectivity Indi	ces (even row	rs)
M = 2N	3.00e-1	1.50e-1	7.52e-2	2.61e+0	1.32e+0	6.59e-1
	2.98	2.98	2.98	2.82	2.89	2.90
M = 8N	2.51e-1	1.26e-1	6.28e-2	2.25e+0	1.13e+0	5.64e-1
	2.49	2.49	2.49	2.43	2.47	2.48
M = 32N	2.47e-1	1.23e-1	6.18e-2	2.21e+0	1.11e+0	5.56e-1
	2.45	2.45	2.45	2.39	2.44	2.45
M = 128N	2.46e-1	1.23e-1	6.17e-2	2.21e+0	1.11e+0	5.55e-1
	2.44	2.45	2.45	2.39	2.43	2.45

Where is the issue with the standard bubble function approach for short-edge jump residual terms?

- Essentially, the edge bubble works as a cut-off function
- Its gradient is $O(H^{-1})$ on shape-regular meshes

• For short edges on anis. meshes, the gradient of the edge bubble becomes $O(h^{-1})$

 \Rightarrow an "incorrect" H/h in the resulting estimator

• Note: no issue for long edges, as $|S|/(h^{-1}) \simeq hH \simeq local volume...$

How we rectify this? (more detail)

• By looking at a patch of anisotropic elements of width $\simeq H$ and total area $\simeq H^2$

- \Rightarrow this allows us to use a cut-off function with a "correct" gradient $O(H^{-1})$
- Unlike the single-edge-setting, the short-edge J_S changes within the patch, so requires a more careful treatment...
- It's not a full story... (also have to take care of the long edges within the patch...)
- Overall, as the setting is more complex, so the proof is more complex as well...

How we rectify this? (more detail)

• Consider a partially structured mesh:

Theorem [Short-edge jump residual terms]

$$\sum_{S \in \mathcal{S} \cap \{x = x_i\}} |\omega_S| J_S^2 \lesssim ||u_h - u||_{H^1(\Omega_i)}^2 + ||H_T \operatorname{osc}(f_h; T)||_{\Omega_i}^2$$

Here $|\omega_S| \sim \text{local volume}$ [Kopteva, preprint, 2017, §9]

• More general setting: in preparation

(the proof is complete for both $\varepsilon = 1$ and $\varepsilon \ll 1$)

Why anisotropic meshes?

Section A

Perceptions & expectations t.b. adjusted for anisotropic meshes

Section B

- Part 0 Standard residual-type estimators on shape-regular meshes; their relation to interpolation errors
- Part 1 Recent a posteriori estimates on anisotropic meshes
- Part 2 A bit of analysis: 3 technical issues addressed...
- Part 3 Some Numerics

Section C

Efficiency, i.e. lower estimator: also problematic on anisotropic meshes...

REFERENCES 42

• N. Kopteva, Linear finite elements may be only first-order pointwise accurate on anisotropic triangulations, Math. Comp., 2014.

- A. Demlow and N. Kopteva, *Maximum-norm a posteriori error estimates for singularly perturbed elliptic reaction-diffusion problems*, Numer. Math., 2015.
- N. Kopteva, Maximum-norm a posteriori error estimates for singularly perturbed reaction-diffusion problems on anisotropic meshes, SIAM J. Numer. Anal., 2015.
- N. Kopteva, Energy-norm a posteriori error estimates for singularly perturbed reaction-diffusion problems on anisotropic meshes, Numer. Math., 2017
- N. Kopteva, *Fully computable a posteriori error estimator using anisotropic flux equilibration on anisotropic meshes*, 2017, submitted for publication, http://www.staff.ul.ie/natalia/pubs.html.

 \mathbf{L}_{∞} norm

Our FIRST ESTIMATOR reduces to

$$||u_h - u||_{\infty} \leq C \ell_h \max_{z \in \mathcal{N}} \left(\min\{\varepsilon, H_z\} || [\![\nabla u_h]\!] |\!|_{\infty; \gamma_z} + \min\{1, \frac{H_z^2}{\varepsilon^2}\} || f_h^I |\!|_{\infty; \omega_z} \right) + C || f_h - f_h^I |\!|_{\infty; \Omega},$$

C is independent of the diameters and the aspect ratios of elements in \mathcal{T} , and of ε .

Here $f_h = f(\cdot, u_h)$, \mathcal{N} is the set of nodes in \mathcal{T} , $\llbracket \nabla u_h \rrbracket$ is the standard jump in the normal derivative of u_h across an element edge, ω_z is the patch of elements surrounding any $z \in \mathcal{N}$, γ_z is the set of edges in the interior of ω_z , $H_z = \text{diam}(\omega_z)$, $\ell_h = \ln(2 + \varepsilon \underline{h}^{-1})$, and \underline{h} is the minimum height of triangles in \mathcal{T} .

- For $\varepsilon = 1$, this gives a standard a posteriori error bound, similar to [Eriksson, Nochetto, Nochetto et al], only now we prove it for anisotropic meshes.
- For $\varepsilon \in (0, 1]$, this is almost identical with our estimator for shape-regular case (on the previous page), but now we assume no shape regularity of the mesh.

L_{∞} norm In order to give a sharper (and more anisotropic in nature) bound for the interior-residual component of the error, we identify sequences of short edges that connect anisotropic nodes:

Under some additional assumptions on each such sequence (which we call a <u>Path</u>), our SECOND ESTIMATOR

$$\|u_{h} - u\|_{\infty} \leq C \ell_{h} \left[\max_{z \in \mathcal{N}} \left(\min\{\varepsilon, H_{z}\} \|J_{z}\|_{\infty; \gamma_{z}} \right) + \max_{z \in \mathcal{N} \setminus \mathcal{N}_{\text{paths}}} \left(\min\{1, \varepsilon^{-2} H_{z}^{2}\} \|f_{h}^{I}\|_{\infty; \omega_{z}} \right) \right]$$

$$+ \max_{z \in \mathcal{N}_{\text{paths}}} \left(\min\{\varepsilon, H_{z}\} \min\{\varepsilon, h_{z}\} \|\varepsilon^{-2} f_{h}^{I}\|_{\infty; \omega_{z}} + \min\{1, \varepsilon^{-2} H_{z}^{2}\} \operatorname{osc}(f_{h}^{I}; \omega_{z}) \right) \right]$$

$$+ C \|f_{h} - f_{h}^{I}\|_{\infty; \Omega},$$

C is independent of the diameters and the aspect ratios of elements in \mathcal{T} , and of ε .

Here $\mathcal{N}_{\text{paths}}$ is the set of mesh nodes that appear in any path, $h_z \sim H_z^{-1}|\omega_z|$, $J_z = [\![\nabla u_h]\!]$.

Energy norm

our FIRST ESTIMATOR reduces to

$$\|u_{h} - u\|_{\varepsilon;\Omega} \leq C \Big\{ \sum_{z \in \mathcal{N}} \Big(\min\{1, \frac{\varepsilon}{h_{z}}\} h_{z} H_{z} \|\varepsilon [\nabla u_{h}]\|_{\infty;\gamma_{z}}^{2} + \|\min\{1, \frac{H_{z}}{\varepsilon}\} f_{h}^{I}\|_{2;\omega_{z}}^{2} \Big) \Big\}^{1/2}$$

$$+ C \|f_{h} - f_{h}^{I}\|_{2;\Omega},$$

C is independent of the diameters and the aspect ratios of elements in \mathcal{T} , and of ε .

Here $f_h = f(\cdot, u_h)$, \mathcal{N} is the set of nodes in \mathcal{T} , $\llbracket \nabla u_h \rrbracket$ is the standard jump in the normal derivative of u_h across an element edge, ω_z is the patch of elements surrounding any $z \in \mathcal{N}$, γ_z is the set of edges in the interior of ω_z , $H_z = \operatorname{diam}(\omega_z)$, and $h_z \sim H_z^{-1}|\omega_z|$.

- For $\varepsilon = 1$, this gives a standard a posteriori error bound, similar to [Babuška et al], only now we prove it for anisotropic meshes.
- For $\varepsilon \in (0, 1]$, this is almost identical with our estimator for shape-regular case [Verfürth], but now we assume no shape regularity of the mesh.

Energy norm For a sharper (bound for the interior-residual component of the error, we again identify sequences of short edges that connect anisotropic nodes:

Under some additional assumptions on each such sequence (which we call a <u>Path</u>), our SECOND ESTIMATOR

$$||u_{h} - u||_{\varepsilon;\Omega} \leq C \Big\{ \sum_{z \in \mathcal{N}} \min\{1, \frac{\varepsilon H_{z}}{h_{z}^{2}}\} h_{z} H_{z} ||\varepsilon[\nabla u_{h}]||_{\infty;\gamma_{z}}^{2} + \sum_{z \in \mathcal{N} \setminus \mathcal{N}_{\text{paths}}} ||\min\{1, \frac{H_{z}}{\varepsilon}\} f_{h}^{I}||_{2;\omega_{z}}^{2}$$

$$+ \sum_{z \in \mathcal{N}_{\text{paths}}} \Big(||\min\{1, \frac{h_{z}}{\varepsilon}\} f_{h}^{I}||_{2;\omega_{z}}^{2} + ||\min\{1, \frac{H_{z}}{\varepsilon}\} \operatorname{osc}(f_{h}^{I}; \omega_{z})||_{2;\omega_{z}}^{2} \Big) \Big]$$

$$+ C ||f_{h} - f_{h}^{I}||_{2;\Omega},$$

C is independent of the diameters and the aspect ratios of elements in \mathcal{T} , and of ε .

Here $\mathcal{N}_{\text{paths}}$ is the set of mesh nodes that appear in any path, $h_z \sim H_z^{-1} |\omega_z|$