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Introduction

This work is one of the result of my work with M.V. Klibanov
at UNC Charlotte, North Carolina, USA.

We develop a new version of the so-called convexification
globally convergent numerical method for a 1-d coefficient
inverse problem. We demonstrate its performance for both
computationally simulated and experimental data.

Convexification is the method, which constructs globally
strictly convex Tikhonov-like functionals for Coefficient Inverse
Problems. The key element of such functionals is the presence
of the Carleman Weight Function.

Convexification addresses the well known problem of multiple
local minima and ravines of conventional Tikhonov-like
functionals.
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Problem statement

Helmholtz equation

Consider the 1-d Helmholtz equation for the function u (x, k),

u′′ + k2c (x)u = −δ (x− x0) , x ∈ R,

lim
x→∞

(u′ + iku) = 0, lim
x→−∞

(u′ − iku) = 0.

where c (x) is the spatially distributed dielectric constant, k is
wave number.

Let u0 (x, k) be the solution of the problem for the case
c (x) ≡ 1. Then

u0 (x, k) =
exp (−ik |x− x0|)

2ik
.
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Problem statement

Inverse problem

Let k and k be two positive constants and k < k. Our inverse
problem is stated as:

Coefficient Inverse Problem (CIP). Determine the
function c(x), assuming that the following function g0(k) is
given:

g0 (k) =
u(0, k)

u0(0, k)
, k ∈ [k, k].

Existence and uniqueness of the solution u (x, k) for each k > 0
was established in:

M. V. Klibanov, L. H. Nguyen, A. Sullivan, and L. Nguyen, A globally
convergent numerical method for a 1-d inverse medium problem with
experimental data, Inverse Probl. Imaging, 10 (2016), pp. 1057–1085.
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Problem statement

Forward Looking Radar

L. Nguyen, D. Wong, M. Ressler, F. Koenig, B. Stanton, G. Smith, J. Sichina,
and K. Kappra, Obstacle avoidance and concealed target detection using the
Army Research Lab ultra-wideband synchronous impulse reconstruction (UWB
SIRE) forward imaging radar, Proc. SPIE, 6553 65530H (2007), pp. 1–8.
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Problem statement

Additional information

Denote
w (x, k) =

u (x, k)

u0 (x, k)
.

Then

w′′ + k2β(x)w + 2ikw′ = 0, β(x) = c(x)− 1.

w (0, k) = g0 (k) , k ∈ [k, k].

Besides, it can be shown that

w′ (0, k) = g1 (k) = 2ik (g0 (k)− 1) , k ∈ [k, k].

w′(1, k) = 0, k ∈ [k, k].
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Problem statement

Asymptotic behavior

The following asymptotic behavior of the function u (x, k)
takes place:

u (x, k) =
1

2ikc1/4 (x)
exp

−ik x∫
x0

√
c (ξ)dξ

 (1 + û (x, k)) ,

k →∞, ∀x ∈ [0, 1] ,

û (x, k) = O

(
1

k

)
, ∂kû (x, k) = O

(
1

k2

)
, k →∞.

M. V. Klibanov, L. H. Nguyen, A. Sullivan, and L. Nguyen, A globally
convergent numerical method for a 1-d inverse medium problem with
experimental data, Inverse Probl. Imaging, 10, pp. 1057–1085, 2016.
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Cost functional

Differential equation

Using the asymptotic expansion, we can prove that there exists
unique function v(x, k), k > 0 such that

v(x, k) =
logw(x, k)

k2

Then our equation becomes:

v′′ + k2 (v′)
2 − 2ikv′ = −β(x), k ∈ [k, k],

v(0, k) =
log g0(k)

k2
, v′(0, k) =

2i

k

(
1− 1

g0(k)

)
, v′(1) = 0

Differentiate this equation with respect to k

v′′k + 2k2v′kv
′ + 2k (v′)

2 − 2ikv′k − 2iv′ = 0.
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Cost functional

Truncated Fourier-like series

We assume that the function v (x, k) can be represented via a
truncated Fourier series

v (x, k) =
N−1∑
n=0

yn (x)ψn (k) ,

where {ψn (k)}∞n=0 is an orthonormal basis of real valued
function such that the following two conditions are met:

1 The first derivative with respect to k of any element of
this basis is not identically zero,

2 This derivative should be a linear combination of a finite
number of elements of this basis.

M. V. Klibanov. Convexification of restricted dirichlet-to-neumann map. J.
Inverse and Ill-Posed Problems, 25: pp. 669 – 685, 2017.
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Cost functional

Special orthonormal basis

Consider the set of functions

{κneκ}∞n=0 , κ =
k − k
k − k

∈ [k, k].

We orthonormalize it using the classical Gram-Schmidt
orthonormalization procedure and obtain the orthonormal
basis

{ψn (k)}∞n=0

Each function ψn (k) has the form

ψn (k) = pn (k) e
k,

where pn (k) is the polynomial of the degree n.

11/36 c© A.E. Kolesov



Cost functional

Special orthonormal basis
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Cost functional

Invertible matrix

ψ′n (k) = pn (k) e
k + p′n (k) e

k = ψn (k) +
n−1∑
j=0

bjnψj (k) .

It can be proven that

amn = (ψ′n, ψm) =

{
1 if n = m,
0 if n < m.

Then A = (amn)
N−1
m,n=0 is an upper triangular matrix:

A =


1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 1

 ,

with det (A) = 1. Thus, the inverse matrix A−1 exists.
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Cost functional

Coupled quasilinear equations

We obtain

N−1∑
n=0

y′′n (x)ψ
′
n (k) + 2k2

N−1∑
n,m=0

y′n (x) y
′
m (x)ψ′n (k)ψ

′
m (k)

+2k

[
N−1∑
n=0

y′n (x)ψn (k)

]2
− 2ik

N−1∑
n=0

y′n (x)ψ
′
n (k)

−2i
N−1∑
n=0

y′n (x)ψn (k) = 0.

Multiply this equation by ψs (k) , s ∈ [0, N − 1] and integrate
with respect to k ∈

(
k, k
)
.
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Cost functional

Coupled quasilinear equations

We obtain
Ay′′ + F̃ (y′) = 0.

where y (x) = (y0, ..., yN−1)
T (x) is N−D vector function.

Since the matrix A is invertible, we multiply this equation by
A−1 and obtain

L(y) = y′′ + F (y′) = 0, x ∈ [0, 1] ,

y (0) = f0, y′ (0) = f1, y′ (1) = 0.

where the vector function F (y′) =M−1
N F̃ (y′) .
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Cost functional

Carleman weight function

ϕλ (x) = e−λx.

Lemma (Carleman estimate). For any complex valued
function u ∈ H2 (0, 1) with u(0) = u′(0) = 0 and for any
parameter λ > 1 the following Carleman estimate holds

1∫
0

|u′′|2 ϕ2
λdx ≥ C

1∫
0

|u′′|2ϕ2
λdx+

+ Cλ

1∫
0

|u′|2ϕ2
λdx+ Cλ3

1∫
0

|u|2ϕ2
λdx,

where the constant C > 0 is independent of u and λ.
16/36 c© A.E. Kolesov



Cost functional

Zero boundary conditions

We have to arrange zero Dirichlet and Neumann boundary
conditions at x = 0, 1 for a new vector function p, which is
associated with the vector function y as:

p(x) = y(x)− f(x), p(0) = p′(0) = p′(1) = 0,

where f(x) is a certain function with f(0) = f0, f ′(0) = f1,
f ′(1) = 0.

We are doing so because some of our theorems are applicable
only in the case of zero boundary conditions.

A.B. Bakushinskii, M.V.Klibanov and N.A. Koshev, Carleman weight functions
for a globally convergent numerical method for ill-posed Cauchy problems for
some quasilinear PDEs, Nonlinear Analysis: Real World Applications, 34
(2017), pp. 201–224.
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Cost functional

Minimization Problem

Let R > 0 be an arbitrary number. Consider the set B (R) of
functions p (x) defined as:

B (R) =
{
p ∈ H2 (0, 1) : p (0) = p′ (0) = p′ (1) = 0, ‖p‖H2(0,1) < R

}
.

Our Tikhonov-like weighted functional is

Jλ,α (p) = e2λ
1∫

0

|L(p)|2 ϕ2
λdx+ α ‖p‖2H2(0,1) .

where α ∈ (0, 1) is the regularization parameter.

Minimization Problem. Minimize Jλ,α (p) on the set p ∈ B (R).
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Cost functional

Theorems

Theorem 1. (strict convexity)The functional Jλ,α (p) has the
Frechét derivative J ′λ,α (p) at each point p ∈ B (2R) . Also,
there exists a number λ1 = λ1 (R,F,N) > 1 such that for all
λ ≥ λ1 the functional Jλ,α (p) is strictly convex on the set
B (R), i.e. for all p1, p2 ∈ B (R):

Jλ,α (p2)− Jλ,α (p1)− J ′λ,α (p1) (p2 − p1) ≥ C1 ‖p2 − p1‖2H2(0,1) .

Theorem 2. For any λ ≥ λ1 and for any α ∈ (0, 1) there
exists a unique minimizer pmin,λ,α of the functional Jλ,α (p) on
the set B (R). Furthermore,

J ′λ,α (pmin,λ,α) (pmin,λ,α − p) ≤ 0, ∀p ∈ B (R).
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Numerical implementation

Algorithm

Calculate the boundary conditions q0, q1 and then f0, f1
Define the initial guess y0 for the vector function y as
y0 = f .
Minimize the functional Jλ,α(y). Then transform the
found vector function y in the vector function v.
Compute the approximation βcomp.

βcomp = −v′′ − k20 (v′)
2
+ 2ik0v

′

After averaging βcomp (x) , determine the coefficient ccomp
as follows:

ccomp =

{
Re(βcomp) + 1.0, if Re(βcomp) ≥ ρmax(Re(βcomp)),

1.0, otherwise

where ρ ∈ (0, 1) is the truncation factor.
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Numerical implementation

Finite difference discretization

We divide the intervals k ∈ [k, k] and x ∈ [0, 1] into Nk and Nx

equal subintervals, respectively, and obtain the Nk ×Nx two
dimensional mesh with the grid points (km, xj): km = k +mhk,
m = 0, . . . , Nk, xj = jhx, j = 0, . . . , Nx, hk = (k − k)/Nk,
hx = 1.0/Nx.

We need to find the discrete function v = {vm,j}, where
vm,j = v(km, xj). The discrete version of Fourier-series can be
written as

v = ψy,

where ψ = {ψm,n} is the Nk ×N matrix with ψm,n = ψn(km)
and y = {yn,j} is the N ×Nx two dimensional discrete vector
function.
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Numerical implementation

Discrete functional and its gradient

Consider

yn,j = an,j + ibn,j, Ln,j = In,j + iSn,j

Discrete functional:

J = e2λhx

N−1∑
n=0

Nx−1∑
j=0

|Ln,j |2 ϕλ2j = e2λhx

N−1∑
n=0

Nx−1∑
j=0

(
I2n,j + S2

n,j

)
ϕλ

2
j

Ln,j =
yn,j+1 − 2yn,j + yn,j−1

h2x
− F

(
yn,j+1 − yn,j−1

2hx

)
,

ϕλj = eλhxj.
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Numerical implementation

Discrete functional and its gradient

Discrete gradient:

∂J

∂ys,l
=

1

2

(
∂J

∂as,l
+ i

∂J

∂bs,l

)
, s = 0, . . . , N − 1, l = 0, . . . , Nx− 1,

where

∂J

∂as,l
= 2e2λhx

N−1∑
n=0

Nx−1∑
j=0

[
In,j

∂In,j
∂as,l

+ Sn,j
∂Sn,j
∂as,l

]
ϕλ

2
j ,

∂J

∂bs,l
= 2e2λhx

N−1∑
n=0

Nx−1∑
j=0

[
In,j

∂In,j
∂bs,l

+ Sn,j
∂Sn,j
∂bs,l

]
ϕλ

2
j ,

L. Sorber, M. Van Barel, L. De Lathauwer Unconstrained Optimization of Real
Functions in Complex Variables, SIAM J. Optim., 22(3), pp. 879–898. (2012)
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Numerical implementation

Discrete functional and its gradient

It can be shown that
∂In,j
∂as,l

=
∂Sn,j
∂bs,l

,
∂In,j
∂bs,l

= −∂Sn,j
∂as,l

.

Then

∂J

∂ys,l
= e2λhx

N−1∑
n=0

Nx−1∑
j=0

[
(In,j + iSn,j)

∂In,j
∂as,l

+ (Sn,j − iIn,j)
∂In,j
∂bs,l

]
ϕλ

2
j

where

∂In,j
∂as,l

=
∂a′′n,j
∂as,l

+ F1

(
∂a′n,j
∂as,l

)
,

∂In,j
∂bs,l

= F2

(
∂a′n,j
∂as,l

)
,

∂a′′n,j
∂as,l

=
δs,ln,j+1 − 2δs,ln,j + δs,ln,j−1

h2x
,

∂a′n,j
∂as,l

=
δs,ln,j+1 − δ

s,l
n,j−1

2hx
,

δs,ln,j =

{
1, n = s, i = j,
0, otherwise
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Reconstruction results

Data generation

We solve 1d Lippmann-Schwinger (LS) equation

u (x, k) =
e−ik|x−x0|

2ik
+
k

2i

1∫
0

e−ik|x−ξ| (c (ξ)− 1)u (ξ, k) dξ,

where the function c (x) is set as follows:

c (x) := ctrue(x) =

{
ĉtrue, x ∈ (xloc − d/2, xloc + d/2),
1, elsewhere.

Here, ĉtrue is the dielectric constant, xloc is the location of the
center, and d is width.

In our numerical experiments:

ĉtrue = {3.0, 4.0, 5.0, 6.0}, xloc = {0.1, 0.2, 0.3, 0.4}, d = 0.1
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Reconstruction results

Data generation

We consider the interval of wave numbers

km ∈ [0.5, 1.5], Nk = 10.

By solving LS equation for every point km we obtain the
noiseless boundary function g0(km).
Next, we add the random noise

g0,δ(km) = g0(km)(1.0 + δσ(km)), σ = σr(km) + iσr(km),

where δ is the noise level, σr and σi are random numbers,
uniformly distributed between −1.0 and 1.0.

In our computations δ = 0.05.

To reduce the noise the function g0,δ(kn) is smoothed out by
using the standard averaging procedure
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Reconstruction results

Optimal number of basis functions

We need to determine the optimal number N of terms in the
truncated Fourier series:

We solve the LS equation for a reference target with
c (x) := ĉtrue (x).
We obtain the functions wtrue(x, k) and vtrue(x, k).
We compute vector functions ytrue,N(x) for different values
of N
Reconstruct approximate functions cappr,N(x).
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Reconstruction results

The approximate functions cappr,N(x)
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Reconstruction results

Optimal number of basis functions

We can see that the functions cappr,N(x) are accurately
approximated for both N = 3 and N = 4, and their
approximation errors

εN = ‖cappr,N − ctrue‖L2(0,1)

are sufficiently small: εN = 0.07 and 0.01, respectively.

Therefore, we choose the optimal number of functions in our
basis N = 3.
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Reconstruction results

Reconstruction results for simulated targets.

ĉtrue xloc ĉcomp εcomp,% ĉtrue xloc ĉcomp εcomp,%
3.0 0.1 2.98 0.67 5.0 0.1 5.32 6.40

0.2 3.13 4.33 0.2 5.14 2.80
0.3 2.80 6.67 0.3 5.11 2.20
0.4 3.17 5.67 0.4 5.19 3.80

4.0 0.1 4.28 7.00 6.0 0.1 6.19 3.17
0.2 3.95 1.25 0.2 6.25 4.17
0.3 4.03 0.75 0.3 6.39 6.50
0.4 4.12 3.00 0.4 6.47 7.83

ĉcomp = max(ccomp), εcomp =
|ĉcomp − ĉtrue|

ĉtrue
· 100%.

Parameters: Nk = 10, Nx = 50, N = 3, λ = 3.0, α = 0.05.
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Reconstruction results

Reconstruction results for simulated targets.
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Reconstruction results

Schematic diagram of data collection
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Reconstruction results

Measured time dependent data
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Reconstruction results

Reconstruction results for bush (left) and wood
(right)

Target ccomp ctrue
Bush 5.47 [3, 20]
Wood 3.80 [2, 6]
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Reconstruction results

Thank you for attention!
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