Mathematical modelling of the fluid flow and

geo-mechanics in the fractured heterogeneous porous

media using multiscale model reduction

Aleksei Tyrylgin
Multiscale model reduction Laboratory, North-Eastern Federal University, Yakutsk,
Russia,

Joint work with V. Alekseev, D. Spiridonov, M. Vasilyeva

Moscow. 2018

[F)

Aleksei Tyrylgin ( Multiscale modMathematical modelling of the fluid f Moscow. 2018 1/ 30



Outline

@ Introduction

e Problem formulation for heterogeneous media and fine grid approximation
e Coarse grid approximation using GMsFEM

e Numerical results for heterogeneous media in 2D and 3D

@ Problem formulation in fractured heterogeneous media

@ Numerical results in fractured heterogeneous media

@ Conclusion

Aleksei Tyrylgin ( Multiscale modMathematical modelling of the fluid f Moscow. 2018



Introduction

@ Mathematical simulation of the flow
processes in fractured porous media plays
an important role in reservoir sumulation, T
nuclear waste disposal, unconventional "
gas production and geothermal energy
production.

uMagnitude

@ Due to high permeability, fractures have
a significant impact on the flow processes.

@ Fractures have very small thickness
compared to typical reservoir sizes. A
common approach to model fracture
media is to consider the fractures as
lower-dimensional objects.

@ Fracture networks have complex
geometries and fine grid simulation of the
processes in fractured porous media can
be computationally expensive.
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Motivation. Multiscale methods.

@ To reduce the dimension of the fine scale
system, multiscale methods or upscaling s
techniques are used.

@ Multiscale methods should combine the
simplicity and efficiency of a coarse-scale
models and the accuracy of microscale

approximations. T4 (Corse Grit) Z.
@ To present the microscale interaction BN = /Nﬁfld

between the fractures and the matrix, we o | w| [

use Generalized Multiscale Finite ==

Element Method (GMsFEM)
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Problem formulation

Let Q € R? is computation domain. We consider a mathematical
model of coupled flow and mechanics in fractured poroelastic medium.
The balance of a linear momentum in the solid is given as

—divor(u,p) =0, or(u,p) =0c(u) —apZ, x €,

Relation between the stress ¢ and strain € tensors is given as
o(u) = ey + 2ue(u), e(u) = 0.5(Vu + (Vu)?),

The fluid mass conservation is given as follows:

om , k

- le(pq) — pf7 q=—— gradp? X € Qa

ot Vf

where m is the fluid mass, ¢ is Darcy velocity, vy is the viscosity, p is
the fluid density, and f is the source term. Here, for simplicity, we
neglect the gravitational forces.
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Fine grid approximation

For numerical solution of the poroelasticity problem on fine grid use a
standard finite element method.

Find (u,p) € V x @ such that
ay(u,v) + b(p,v) =0,V v € v,
du dp A
d(dt >+S<dt >+ap(p,q) =1(g), VqeQ.

where V = [H1(Q)]? and Q = H(Q).

ult, v) = /Q o) e(w)ds, apna) = [ (5 gradp.grada)

/—pqd:v /fquc

b(p,v):/gzoz(gradp,v)dx, d(u,q):/Qozdivuqdaz.
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Fine grid approximation

The standard implicit finite difference scheme is used for the time
approximation of the pressure equation and we solve following coupled
system in the matrix form on the fine grid.

A0 028+ (6 1) ()= (),
where M = [m;j, A = [a;], K = [kij|, D = [dy;], B = [b], F =[]

mij= [ enéioydn, o= [ angrads, grad, da,
Q Q

kij:/O'((I)i)ZE((I)j)d[E, dij:/agradqbiq)j dx,
Q Q

bij:/adiv@iquda:, fj:/fqudas,
Q Q

and ®; and ¢; are the linear basis functions for displacements and
pressure.
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Coarse grid approximation using GMsFEM

For coarse grid approximation of the poroelasticity problems in heterogeneous
media, we use the Generalized Multiscale Finite Element Method (GMsFEM).
GMSsFEM contains following steps:

(1) Construction of the coarse and fine meshes,

(2) Generation of the local domains where we construct multiscale basis
functions,

(3) Solution of the local spectral problems for multiscale basis functions
construction,

(4) Construction and solution of the coarse scale approximation on
multiscale space.

TH (Coarse Grid) ;

|1

] w;

K K Coarse
’ ‘] Neighborhood

K | K T

Coarse
Element
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GMsFEM. Spectral problem

For construction of the multiscale basis functions, we solve a local spectral
problems in domain w; for displacement and pressure separately.

@ Pressure

o) = [

or

1y (6:0) = Apsp(6.0).
0n6.Vads+ [ 0V, Vads, s,(6.0)= [ boqds,
I vl Wi

A 3

Apd = ApSpo.

@ Displacement
ay (P, v) = Aysu(P,0),

ay (P, v) = / o(®),e(v)dx, s,(P,v)= /.()\—I—Qu)(@,v)daz,

2 K2

or

Ay® =25, 9.

We form the multiscale spaces V},, 5, using eigenvectors ¢1, ¢o, ..., ¢r,
®y, Ps,..., P, corresponding to the first smallest L eigenvalues, where
A <A< ... .<AL.
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GMsFEM. Snapshot space

For solution of the local spectral problem, we use a snapshot space
Visnap for displacement and g4y for pressure.

@ Pressure

e Displacement
ay(®j,v) =0, z€w;
(I)j = (5]',0) or (O,5j), xr € Ow;

We define a transition matrices R}, ., and Rinap:

U L snap snap D L snap snap
snap [q)l 7"'7(I)L,L- ] Rsnap — [ 1 Yy YL, ]
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GMsFEM. Spectral problem

We define matrices for displacements and for pressure and solve
following eigenvalue problem on the snapshot space.

e Displacement:

K,® = \Q,2,
T . pu U T N . pu U T
KOJ o RsnapKw(Rsnap) ’ Qw T RsnapQw(Rsnap) )
where ®¥ = (RY,,,)" ®;.

@ Pressure:

Aleksei Tyrylgin ( Multiscale modMathematical modelling of the fluid f Moscow. 2018



Coarse grid approximation using GMsFEM

For obtaining conforming basis functions we use linear partition of
unity functions. We construct transition matrices R, and R, from a
fine grid to a coarse grid and use it for reducing the dimension of the
problem.

with

Ry = {x'®1, '@, ..., x'®L, .. XNCCI)?]LVC, XNCCIDéVC, e XNC(IDgC}
and

Ry = {x'01, X @2, s X b, x0T XN dp e, o x0T, 1

where Y is linear partition of unity functions, L is the number of basis
functions and V. is the number of vertices of a coarse grid.
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Coarse grid approximation using GMsFEM

Then the system of equations can be translated into a coarse grid
l M. D, De — Pe 4 A. 0 pe\ [ Fe
+\0 O Ue — U B, K.)]\u.)] \0)’

K.=R,KR,, A.=R,AR), M.=R,MR],

where

B.=R,BR], D.=R,DR,, F,=R,F.

After obtaining of a coarse-scale solution, we can reconstruct fine-scale
solution
T T
Ums = Ru Ucy  Pms — Rp Pc-
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Numerical results for 2D

/|

Computational meshes. Left: coarse grid, Right: fine grid.
Boundary conditions:
Uy =0, oy =0, x € o UTy,
uy =0, 0, =0, x€l's, o,=0,=0,0€l7y,
p=0, xe€lUl'sUl'yUTs,
p1 =10, =z e€TlY}.
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Numerical results for 2D

@ A\ = 5 for domain with blue color Ay = 10 for domain with red
color

@ i1 = 4 for domain with blue color pe = 8 for domain with red color

@ k1 = 0.01 for domain with blue color ko = 0.05 for domain with
red color

@ The calculation is performed by T}, = 0.1 with step in time
7 =0.01

@ Biot modulus - 8 = 0.01, Biot coefficient - o = 1
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Numerical results for 2D

U Magnitude ux uy
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Distribution of pressure, displacement along X and Y directions at the
last moment of time for GMSFEM
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Distribution of pressure, displacement along X and Y directions at the
last moment of time for fine grid.
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Numerical results for 2D

L | Ly (%) | HY (%) | Iy (%) | HY (%)
1 | 95.845 | 96.098 | 97.017 | 99.633
2 | 40.431 | 56.988 | 61.624 | 66.461
4 | 13.940 | 23.854 | 22.094 | 39.869
8 | 1.031 | 5.596 | 2.240 | 12.950
12| 0.063 | 0.561 | 0.062 | 0.514

Relative errors for displacement and pressure with different numbers of

multiscale basis functions in GMsFEM

Moscow. 2018
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Numerical results for 3D
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Geometric domain in a tetrahedral computational mesh.

@ A1 = 20 for domain with blue color Ay = 100 for domain with red

color

@ 11 = 100 for domain with blue color us = 200 for domain with red
color

@ k1 = 1 for domain with blue color ko = 10 for domain with red
color

@ The calculation is performed by 71}, = 0.001 with step in time
7 =0.0001

@ Biot modulus - 8 = 0.01, Biot coefficient - o = 1
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Numerical results for 3D

uMagnitude ux uy uz
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The distribution of pressure and displacement along X, Y and Z (from
left to rlght) at the final time for GMSFEM
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The distribution of pressure and displacement along X, Y and Z (from
left to right) at the final time for fine grid.
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Numerical results for 3D

L | Ly (%) | HY (%) | Iy (%) | HY (%)
1 | 17.423 | 43.768 | 28.158 | 53.484
2 | 14.137 | 35.863 | 18.698 | 43.129
4 | 5437 | 20492 | 9.294 | 31.934
8 | 3.124 | 14.134 | 4.306 | 21.463
12 | 1.643 | 9.635 | 2.369 | 16.109

Relative errors for displacement and pressure with different numbers of

multiscale basis functions in GMsFEM for three-dimensional

formulation.

Moscow. 2018

Aleksei Tyrylgin ( Multiscale modMathematical modelling of the fluid f

20 / 30



Problem formulation in fractured media

We suppose that p = const and b = const. Therefore, we have the
following coupled system of equations for displacements, pressure in
porous matrix and fractures

—divo(u) + agradp =0, x € €,

0 ey :
cm—p + « v _ div (ay, gradp) + oms(p —ps) = f, €,
Ot Ot
dp .
Cfa—tf —div(aygradpy) — orm(p —py) = fr, €7,
where
1 b k k¢ 5
Cm_M7 Cf_ﬁf, a/m—y_f, a,f— I/—f
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Fine grid approximation

For numerical solution of the poroelasticity problem on fine grid use a
standard finite element method. Find (u,p) € V' X @ such that

ay(u,v) +b(p,v) =0,V v € V,

d(?j >+8<C§Z >+ap(p,q)=l(Q)7 VqeQ.
where V = [H}(Q)]¢ and Q = H*(Q).

enlw) = [ oeto)dn, 1) = [ fadet Y [ fyade

k
ap(p,q) = /Q( gradp,gradq) dx—i—Z/ (—gradp,gradq)d
b
/Mpqu + Z/ —pqdac

b(p,v):/ga(gradp,v)d:v, d(u,q):/Qadivuqu.
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Fine grid approximation

The standard implicit finite difference scheme is used for the time
approximation of the pressure equation and we solve following coupled system
in the matrix form on the fine grid.

LRE (o m=)

where M = [m;], A = [ai;], K = [ki;], D = [dij], B = [bi;],
F = [fj],M:Mm—l—Mf,A:Am—I—Af

mig= [ endioydt 3 [ cvivsas,
aij = / Ay, grad @; - grad ¢ dv + Z/ aygrad; ¢; dz,
kij = / O’((I)Z) . e(<I>j)dx, dz’j = / agrad ¢z (I)j diU,
Q Q

bij:/OédiV(I)i¢ijC, f]:/fgb]da:—l—z ff@bjdi(?,
Q Q I vl

and ®; and ¢; are the linear basis functions for displacements and pressure.
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Numerical results in fractured media

homogeneous media

r2

ri e - rs e

r4

Computational meshes. Left: coarse grid, Right: fine grid.

The numerical solution is presented for the following boundary
conditions
uy =0, oy =0, x €I'3UIY

uy =0, 0, =0, zel'y Ul
p=1, z el}.
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Numerical results in fractured homogeneous media

homogeneous media
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Distribution of pressure, displacement along X and Y directions at the
last moment of tlme for GMSFEM in homogeneous media.
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Distribution of pressure, displacement along X and Y directions at the

last moment of time for fine grid in homogeneous media.
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Numerical results in fractured homogeneous media

homogeneous media

L | Ly (%) | Hy (%) | Ly (%) | HY (%)
1 | 81.7277 | 77.8344 | 51.7067 | 127.035
2 | 30.8361 | 49.2153 | 29.7308 | 93.3461
4 | 7.31921 | 14.7866 | 6.71832 | 39.985
8 | 2.3319 | 5.65635 | 0.985431 | 12.5086
12 | 1.69256 | 5.59024 | 0.339608 | 7.26006

Relative errors for displacement and pressure with different numbers of

multiscale basis functions for GMsFEM in homogeneous media.
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Numerical results in fractured heterogeneous media

heterogeneous media

u u
1.932e+00 Q.23 1.653e+01 2.877e+00 5 2.294e+02

Flasticity parameter EE and heterogeneous permeability.
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Numerical results in fractured heterogeneous media

heterogeneous media

e-0

N MW i i s " i s

P

Distribution of pressure, displacement along X and Y directions at the
last moment of time for GMSFEM in heterogeneous media.
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i

Distribution of pressure, displacement along X and Y directions at the
last moment of time for GMsSFEM in heterogeneous media.
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Numerical results in fractured heterogeneous media

heterogeneous media

Ly (%) | HY (%) | Ly (%) | HY (%)
80.9641 | 69.2054 | 14.951 | 141.648
23.159 | 41.3603 | 11.5642 | 102.523
11.1475 | 14.2097 | 2.71181 | 34.5921
5.63175 | 10.4813 | 3.60061 | 29.3502
1.14291 | 5.16293 | 0.460655 | 6.42927

SOO»QL\D}—LH

Relative errors for displacement and pressure with different numbers of
multiscale basis functions for GMsFEM in heterogeneous media.
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Conclusion

e We considered the coupled system of equations for pressure and
displacements in fractured media.

e For approximation of the problem on the fine grid the finite
element method is used.

@ For coarse grid approximation, the Generalized Multiscale Finite
Element Methods for the poroelasticity problem in fractured
heterogeneous porous media is presented.

@ We calculate the relative errors for different number of the
multiscale basis functions.

@ We observe that the presented method can provide good accuracy
in homogeneous and heterogeneous domains.

Thank you for your attention!
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