The Marcinkiewicz-type discretization theorems

Vladimir Temlyakov

Moscow; August 16, 2018

白 と く ヨ と く ヨ

We are interested in discretizing the L_q , $1 \le q \le \infty$, norm of elements of an *N*-dimensional subspace X_N . We call such results the Marcinkiewicz-type discretization theorems. There are different settings and different ingredients, which play important role in this problem.

Marcinkiewicz problem

Let Ω be a compact subset of \mathbb{R}^d with the probability measure μ . We say that a linear subspace X_N of the $L_q(\Omega)$, $1 \le q < \infty$, admits the Marcinkiewicz-type discretization theorem with parameters mand q if there exist a set $\{\xi^{\nu} \in \Omega, \nu = 1, ..., m\}$ and two positive constants $C_j(d, q)$, j = 1, 2, such that for any $f \in X_N$ we have

$$C_1(d,q) \|f\|_q^q \le rac{1}{m} \sum_{
u=1}^m |f(\xi^{
u})|^q \le C_2(d,q) \|f\|_q^q.$$
 (1)

Marcinkiewicz problem

Let Ω be a compact subset of \mathbb{R}^d with the probability measure μ . We say that a linear subspace X_N of the $L_q(\Omega)$, $1 \le q < \infty$, admits the Marcinkiewicz-type discretization theorem with parameters mand q if there exist a set $\{\xi^{\nu} \in \Omega, \nu = 1, ..., m\}$ and two positive constants $C_j(d, q)$, j = 1, 2, such that for any $f \in X_N$ we have

$$C_1(d,q) \|f\|_q^q \leq rac{1}{m} \sum_{
u=1}^m |f(\xi^{
u})|^q \leq C_2(d,q) \|f\|_q^q.$$
 (1)

In the case $q = \infty$ we define L_{∞} as the space of continuous on Ω functions and ask for

$$C_1(d) \|f\|_{\infty} \le \max_{1 \le \nu \le m} |f(\xi^{\nu})| \le \|f\|_{\infty}.$$
 (2)

Marcinkiewicz problem

Let Ω be a compact subset of \mathbb{R}^d with the probability measure μ . We say that a linear subspace X_N of the $L_q(\Omega)$, $1 \le q < \infty$, admits the Marcinkiewicz-type discretization theorem with parameters mand q if there exist a set $\{\xi^{\nu} \in \Omega, \nu = 1, ..., m\}$ and two positive constants $C_j(d, q)$, j = 1, 2, such that for any $f \in X_N$ we have

$$C_1(d,q) \|f\|_q^q \le rac{1}{m} \sum_{
u=1}^m |f(\xi^{
u})|^q \le C_2(d,q) \|f\|_q^q.$$
 (1)

In the case $q = \infty$ we define L_{∞} as the space of continuous on Ω functions and ask for

$$C_1(d) \|f\|_{\infty} \le \max_{1 \le \nu \le m} |f(\xi^{\nu})| \le \|f\|_{\infty}.$$
 (2)

We will also use a brief way to express the above property: the $\mathcal{M}(m,q)$ theorem holds for a subspace X_N or $X_N \in \mathcal{M}(m,q)$.

Marcinkiewicz problem with weights

We say that a linear subspace X_N of the $L_q(\Omega)$, $1 \le q < \infty$, admits the weighted Marcinkiewicz-type discretization theorem with parameters m and q if there exist a set of knots $\{\xi^{\nu} \in \Omega\}$, a set of weights $\{\lambda_{\nu}\}$, $\nu = 1, \ldots, m$, and two positive constants $C_j(d, q)$, j = 1, 2, such that for any $f \in X_N$ we have

$$C_1(d,q) \|f\|_q^q \leq \sum_{\nu=1}^m \lambda_{\nu} |f(\xi^{\nu})|^q \leq C_2(d,q) \|f\|_q^q.$$
 (3)

Marcinkiewicz problem with weights

We say that a linear subspace X_N of the $L_q(\Omega)$, $1 \le q < \infty$, admits the weighted Marcinkiewicz-type discretization theorem with parameters m and q if there exist a set of knots $\{\xi^{\nu} \in \Omega\}$, a set of weights $\{\lambda_{\nu}\}$, $\nu = 1, \ldots, m$, and two positive constants $C_j(d, q)$, j = 1, 2, such that for any $f \in X_N$ we have

$$C_1(d,q)\|f\|_q^q \leq \sum_{\nu=1}^m \lambda_\nu |f(\xi^\nu)|^q \leq C_2(d,q)\|f\|_q^q.$$
(3)

Then we also say that the $\mathcal{M}^{w}(m, q)$ theorem holds for a subspace X_{N} or $X_{N} \in \mathcal{M}^{w}(m, q)$. Obviously, $X_{N} \in \mathcal{M}(m, q)$ implies that $X_{N} \in \mathcal{M}^{w}(m, q)$.

伺下 イヨト イヨト

Marcinkiewicz problem with *e*

We write $X_N \in \mathcal{M}(m, q, \varepsilon)$ if (1) holds with $C_1(d, q) = 1 - \varepsilon$ and $C_2(d, q) = 1 + \varepsilon$. Respectively, we write $X_N \in \mathcal{M}^w(m, q, \varepsilon)$ if (3) holds with $C_1(d, q) = 1 - \varepsilon$ and $C_2(d, q) = 1 + \varepsilon$.

Marcinkiewicz problem with *e*

We write $X_N \in \mathcal{M}(m, q, \varepsilon)$ if (1) holds with $C_1(d, q) = 1 - \varepsilon$ and $C_2(d, q) = 1 + \varepsilon$. Respectively, we write $X_N \in \mathcal{M}^w(m, q, \varepsilon)$ if (3) holds with $C_1(d, q) = 1 - \varepsilon$ and $C_2(d, q) = 1 + \varepsilon$. We note that the most powerful results are for $\mathcal{M}(m, q, 0)$, when the L_q norm of $f \in X_N$ is discretized exactly by the formula with equal weights 1/m.

Some remarks for the case q = 2

We describe the properties of the subspace X_N in terms of a system $\mathcal{U}_N := \{u_i\}_{i=1}^N$ of functions such that $X_N = \operatorname{span}\{u_i, i = 1, \dots, N\}$. In the case $X_N \subset L_2$ we assume that the system is orthonormal on Ω with respect to measure μ . In the case of real functions we associate with $x \in \Omega$ the matrix $G(x) := [u_i(x)u_j(x)]_{i,j=1}^N$. Clearly, G(x) is a symmetric positive semi-definite matrix of rank 1. It is easy to see that for a set of points $\xi^k \in \Omega$, $k = 1, \dots, m$, and $f = \sum_{i=1}^N b_i u_i$ we have

$$\sum_{k=1}^m \lambda_k f(\xi^k)^2 - \int_{\Omega} f(x)^2 d\mu = \mathbf{b}^T \left(\sum_{k=1}^m \lambda_k G(\xi^k) - I \right) \mathbf{b},$$

where $\mathbf{b} = (b_1, \dots, b_N)^T$ is the column vector and I is the identity matrix.

Remarks continue

Therefore, the $\mathcal{M}^{w}(m, 2)$ problem is closely connected with a problem of approximation (representation) of the identity matrix I by an *m*-term approximant with respect to the system $\{G(x)\}_{x\in\Omega}$. It is easy to understand that under our assumptions on the system \mathcal{U}_{N} there exist a set of knots $\{\xi^{k}\}_{k=1}^{m}$ and a set of weights $\{\lambda_{k}\}_{k=1}^{m}$, with $m \leq N^{2}$ such that

$$I = \sum_{k=1}^{m} \lambda_k G(\xi^k)$$

and, therefore, we have for any $X_N \subset L_2$ that

 $X_N \in \mathcal{M}^w(N^2,2,0).$

We begin with formulation of the Rudelson result from 1999. Let $\Omega_M = \{x^j\}_{j=1}^M$ be a discrete set with the probability measure $\mu(x^j) = 1/M, j = 1, \ldots, M$. Assume that $\{u_i(x)\}_{i=1}^N$ is a real orthonormal on Ω_M system satisfying the following condition: **E** for all j

 $\sum_{i=1}^{N} u_i (x^j)^2 \le N t^2$

with some $t \ge 1$.

- - E - - E

Rudelson's theorem

Then for every $\epsilon > 0$ there exists a set $J \subset \{1, \dots, M\}$ of indices with cardinality

$$m := |J| \le C \frac{t^2}{\epsilon^2} N \log \frac{Nt^2}{\epsilon^2}$$

such that for any $f = \sum_{i=1}^{N} c_i u_i$ we have

$$(1-\epsilon)\|f\|_2^2 \leq \frac{1}{m}\sum_{j\in J}f(x^j)^2 \leq (1+\epsilon)\|f\|_2^2$$

- 4 E K 4 E K

A slight improvement

Theorem (VT, 2017)

Let $\{u_i\}_{i=1}^N$ be an orthonormal system, satisfying condition **E**. Then for every $\epsilon > 0$ there exists a set $\{\xi^j\}_{i=1}^m \subset \Omega$ with

$$m \leq C \frac{t^2}{\epsilon^2} N \log N$$

such that for any $f = \sum_{i=1}^{N} c_i u_i$ we have

$$(1-\epsilon)\|f\|_2^2 \le rac{1}{m}\sum_{j=1}^m f(\xi^j)^2 \le (1+\epsilon)\|f\|_2^2.$$

(4) E (4) E (4) E

The Marcinkiewicz-type theorem with weights

We now comment on a recent breakthrough result by J. Batson, D.A. Spielman, and N. Srivastava, 2012. We formulate their result in our notations. Let as above $\Omega_M = \{x^j\}_{j=1}^M$ be a discrete set with the probability measure $\mu(x^j) = 1/M, j = 1, \ldots, M$. Assume that $\{u_i(x)\}_{i=1}^N$ is a real orthonormal on Ω_M system. Then for any number d > 1 there exist a set of weights $w_j \ge 0$ such that $|\{j : w_j \ne 0\}| \le dN$ so that for any $f \in \text{span}\{u_1, \ldots, u_N\}$ we have

$$\|f\|_{2}^{2} \leq \sum_{j=1}^{M} w_{j}f(x^{j})^{2} \leq \frac{d+1+2\sqrt{d}}{d+1-2\sqrt{d}}\|f\|_{2}^{2}$$

The proof of this result is based on a delicate study of the *m*-term approximation of the identity matrix *I* with respect to the system $\mathcal{D} := \{G(x)\}_{x \in \Omega}, G(x) := [u_i(x)u_j(x)]_{i,j=1}^N$ in the spectral norm. The authors control the change of the maximal and minimal eigenvalues of a matrix, when they add a rank one matrix of the form wG(x). Their proof provides an algorithm for construction of the weights $\{w_i\}$. In particular, this implies that

 $X_N(\Omega_M) \in \mathcal{M}^w(m, 2, \epsilon)$ provided $m \ge CN\epsilon^{-2}$

with large enough C.

Further results

Theorem (1; VT, 2017)

Let $\Omega_M = \{x^j\}_{j=1}^M$ be a discrete set with the probability measure $\mu(x^j) = 1/M, j = 1, ..., M$. Assume that $\{u_i(x)\}_{i=1}^N$ is an orthonormal on Ω_M system (real or complex). Assume in addition that this system has the following property: for all j = 1, ..., M we have $\sum_{i=1}^N |u_i(x^j)|^2 = N$. Then there is an absolute constant C_1 such that there exists a subset $J \subset \{1, 2, ..., M\}$ with the property: $m := |J| \leq C_1 N$ and for any $f \in X_N := \operatorname{span}\{u_1, ..., u_N\}$ we have

$$C_2 \|f\|_2^2 \leq rac{1}{m} \sum_{j \in J} |f(x^j)|^2 \leq C_3 \|f\|_2^2,$$

where C_2 and C_3 are absolute positive constants.

NOU Lemma

The above theorem is based on the following lemma from S. Nitzan, A. Olevskii, and A. Ulanovskii, 2016.

Lemma (NOU, 2016)

Let a system of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_M$ from \mathbb{C}^N have the following properties: for all $\mathbf{w} \in \mathbb{C}^N$ we have $\sum_{j=1}^M |\langle \mathbf{w}, \mathbf{v}_j \rangle|^2 = \|\mathbf{w}\|_2^2$ and $\|\mathbf{v}_j\|_2^2 = N/M, \quad j = 1, \ldots, M$. Then there is a subset $J \subset \{1, 2, \ldots, M\}$ such that for all $\mathbf{w} \in \mathbb{C}^N$

$$c_0 \|\mathbf{w}\|_2^2 \leq \frac{M}{N} \sum_{j \in J} |\langle \mathbf{w}, \mathbf{v}_j \rangle|^2 \leq C_0 \|\mathbf{w}\|_2^2,$$

where c_0 and C_0 are some absolute positive constants.

同下 イヨト イヨ

Fundamental theorem

The above Lemma was derived from the following theorem from A. Marcus, D.A. Spielman, and N. Srivastava, 2015, which solved the Kadison-Singer problem.

Theorem (MSS, 2015)

Let a system of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_M$ from \mathbb{C}^N have the following properties: for all $\mathbf{w} \in \mathbb{C}^N$ we have $\sum_{j=1}^M |\langle \mathbf{w}, \mathbf{v}_j \rangle|^2 = \|\mathbf{w}\|_2^2$ and $\|\mathbf{v}_j\|_2^2 \leq \epsilon$. Then there exists a partition of $\{1, \ldots, M\}$ into two sets S_1 and S_2 , such that for each i = 1, 2 we have for all $\mathbf{w} \in \mathbb{C}^N$

$$\sum_{j\in S_i} |\langle \mathbf{w}, \mathbf{v}_j \rangle|^2 \leq \frac{(1+\sqrt{2\epsilon})^2}{2} \|\mathbf{w}\|_2^2.$$

Introduction The Marcinkiewicz-type theorems

Trigonometric polynomials

Let Q be a finite subset of \mathbb{Z}^d . We denote

$$\mathcal{T}(Q) := \{f : f = \sum_{\mathbf{k} \in Q} c_{\mathbf{k}} e^{i(\mathbf{k}, \mathbf{x})} \}.$$

• • = • • =

Trigonometric polynomials

Let Q be a finite subset of \mathbb{Z}^d . We denote

$$\mathcal{T}(Q) := \{f : f = \sum_{\mathbf{k} \in Q} c_{\mathbf{k}} e^{i(\mathbf{k},\mathbf{x})}\}.$$

The above Theorem (1; VT, 2017) implies the following result.

Theorem (2; VT, 2017)

There are three positive absolute constants C_1 , C_2 , and C_3 with the following properties: For any $d \in \mathbb{N}$ and any $Q \subset \mathbb{Z}^d$ there exists a set of $m \leq C_1 |Q|$ points $\xi^j \in \mathbb{T}^d$, j = 1, ..., m such that for any $f \in \mathcal{T}(Q)$ we have

$$C_2 \|f\|_2^2 \leq rac{1}{m} \sum_{j=1}^m |f(\xi^j)|^2 \leq C_3 \|f\|_2^2.$$

Conditions on X_N

We now proceed to the L_1 case. We impose the following assumptions on the system $\{u_i\}_{i=1}^N$ of real functions. **A.** There exist $\alpha > 0$, β , and K_1 such that for all $i \in [1, N]$ we have

$$|u_i(\mathbf{x}) - u_i(\mathbf{y})| \le K_1 N^\beta \|\mathbf{x} - \mathbf{y}\|_\infty^\alpha, \quad \mathbf{x}, \mathbf{y} \in \Omega.$$
 (4)

Conditions on X_N

We now proceed to the L_1 case. We impose the following assumptions on the system $\{u_i\}_{i=1}^N$ of real functions. **A.** There exist $\alpha > 0$, β , and K_1 such that for all $i \in [1, N]$ we have

$$|u_i(\mathbf{x}) - u_i(\mathbf{y})| \le K_1 N^{\beta} \|\mathbf{x} - \mathbf{y}\|_{\infty}^{lpha}, \quad \mathbf{x}, \mathbf{y} \in \Omega.$$
 (4)

B. There exists a constant K_2 such that $||u_i||_{\infty}^2 \leq K_2$, i = 1, ..., N.

Conditions on X_N

We now proceed to the L_1 case. We impose the following assumptions on the system $\{u_i\}_{i=1}^N$ of real functions. **A.** There exist $\alpha > 0$, β , and K_1 such that for all $i \in [1, N]$ we have

$$|u_i(\mathbf{x}) - u_i(\mathbf{y})| \le K_1 N^{\beta} \|\mathbf{x} - \mathbf{y}\|_{\infty}^{\alpha}, \quad \mathbf{x}, \mathbf{y} \in \Omega.$$
 (4)

B. There exists a constant K_2 such that $||u_i||_{\infty}^2 \leq K_2$, i = 1, ..., N. **C.** Denote $X_N := \operatorname{span}(u_1, ..., u_N)$. There exist two constants K_3 and K_4 such that the following Nikol'skii-type inequality holds for all $f \in X_N$

$$\|f\|_{\infty} \leq K_3 N^{K_4/p} \|f\|_p, \quad p \in [2,\infty).$$
 (5)

Main theorem

Theorem (3; VT, 2017)

Suppose that a real orthonormal system $\{u_i\}_{i=1}^N$ satisfies conditions **A**, **B**, and **C**. Then there exists a set of $m \leq C_1 N(\log N)^{7/2}$ points $\xi^j \in \Omega$, j = 1, ..., m, $C_1 = C(d, K_1, K_2, K_3, K_4, \Omega, \alpha, \beta)$, such that for any $f \in X_N$ we have

$$rac{1}{2}\|f\|_1 \leq rac{1}{m}\sum_{j=1}^m |f(\xi^j)| \leq rac{3}{2}\|f\|_1.$$

Definition of the entropy numbers

Let X be a Banach space and let B_X denote the unit ball of X with the center at 0. Denote by $B_X(y, r)$ a ball with center y and radius $r: \{x \in X : ||x - y|| \le r\}$. For a compact set A and a positive number ε we define the covering number $N_{\varepsilon}(A, X)$ as follows

 $N_{\varepsilon}(A,X) := \min\{n : \exists y^1, \ldots, y^n, y^j \in A : A \subseteq \cup_{j=1}^n B_X(y^j, \varepsilon)\}.$

Definition of the entropy numbers

Let X be a Banach space and let B_X denote the unit ball of X with the center at 0. Denote by $B_X(y, r)$ a ball with center y and radius $r: \{x \in X : ||x - y|| \le r\}$. For a compact set A and a positive number ε we define the covering number $N_{\varepsilon}(A, X)$ as follows

 $N_{\varepsilon}(A,X) := \min\{n : \exists y^1, \ldots, y^n, y^j \in A : A \subseteq \cup_{j=1}^n B_X(y^j, \varepsilon)\}.$

It is convenient to consider along with the entropy $H_{\varepsilon}(A, X) := \log_2 N_{\varepsilon}(A, X)$ the entropy numbers $\varepsilon_k(A, X)$:

$$\varepsilon_k(A,X) := \inf\{\varepsilon : \exists y^1, \ldots, y^{2^k} \in A : A \subseteq \cup_{j=1}^{2^k} B_X(y^j, \varepsilon)\}.$$

In our definition of $N_{\varepsilon}(A, X)$ and $\varepsilon_k(A, X)$ we require $y^j \in A$. In a standard definition of $N_{\varepsilon}(A, X)$ and $\varepsilon_k(A, X)$ this restriction is not imposed. However, it is well known that these characteristics may differ at most by a factor 2.

Conditional theorem

Theorem (4; VT2017)

Suppose that a real N-dimensional subspace X_N satisfies the following condition on the entropy numbers of the unit ball $X_N^1 := \{f \in X_N : \|f\|_1 \le 1\}$ with $B \ge 1$

$$arepsilon_k(X^1_N,L_\infty) \leq B \left\{egin{array}{cc} N/k, & k \leq N,\ 2^{-k/N}, & k \geq N. \end{array}
ight.$$

Then there exists a set of $m \leq C_1 NB(\log_2(2N \log_2(8B)))^2$ points $\xi^j \in \Omega, j = 1, ..., m$, with large enough absolute constant C_1 , such that for any $f \in X_N$ we have

$$rac{1}{2}\|f\|_1 \leq rac{1}{m}\sum_{j=1}^m |f(\xi^j)| \leq rac{3}{2}\|f\|_1.$$

Hyperbolic cross polynomials

For $\mathbf{s} \in \mathbb{Z}_+^d$ define

 $\rho(\mathbf{s}) := \{\mathbf{k} \in \mathbb{Z}^d : [2^{s_j-1}] \le |k_j| < 2^{s_j}, \quad j = 1, \dots, d\}$

where [x] denotes the integer part of x.

Hyperbolic cross polynomials

For $\mathbf{s} \in \mathbb{Z}^d_+$ define

 $\rho(\mathbf{s}) := \{\mathbf{k} \in \mathbb{Z}^d : [2^{\mathbf{s}_j - 1}] \le |k_j| < 2^{\mathbf{s}_j}, \quad j = 1, \dots, d\}$

where [x] denotes the integer part of x. We define the step hyperbolic cross Q_n as follows

 $Q_n := \cup_{\mathbf{s}: \|\mathbf{s}\|_1 \le n} \rho(\mathbf{s})$

and the corresponding set of the hyperbolic cross polynomials as

$$\mathcal{T}(Q_n) := \{f : f = \sum_{\mathbf{k} \in Q_n} c_{\mathbf{k}} e^{i(\mathbf{k},\mathbf{x})}\}.$$

Discretization for the hyperbolic cross polynomials

Theorem (5; VT, 2017)

Let $d \in \mathbb{N}$. For any $n \in \mathbb{N}$ there exists a set of $m \leq C_1(d)|Q_n|n^{7/2}$ points $\xi^j \in \mathbb{T}^d$, j = 1, ..., m such that for any $f \in \mathcal{T}(Q_n)$ we have

$$C_2(d) \|f\|_1 \leq rac{1}{m} \sum_{j=1}^m |f(\xi^j)| \leq C_3(d) \|f\|_1.$$

General trigonometric polynomials

Theorem (6; VT, 2017)

For any $Q \subset \Pi(\mathbf{N})$ with $\mathbf{N} = (2^n, \ldots, 2^n)$ and $\epsilon \in [2^{1-2^{nd/2}}, 1/2]$ there exists a set of $m \leq C_1(d)|Q|n^{7/2}\epsilon^{-2}$ points $\xi^j \in \mathbb{T}^d$, $j = 1, \ldots, m$ such that for any $f \in \mathcal{T}(Q)$ we have

$$(1-\epsilon)\|f\|_1 \leq rac{1}{m}\sum_{j=1}^m |f(\xi^j)| \leq (1+\epsilon)\|f\|_1.$$

- - E - - E