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Inctroduction

Fractured porous media are characterized by the
presence of fractures at multiple scales

To present the microscale interaction between the
fractures and the matrix, various coarse grid models
have been developed. These include dual-continua
approaches, coarse-scale continuum model, upscaling
methods, Multiscale Finite Volume, and so on.

To present the microscale interaction between the
fractures and the matrix, we use Generalized
Multiscale Finite Element Method (GMsFEM)

The main idea is to use multiscale basis functions to
extract an essential information in each coarse
region and develop a local reduced order model.
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Problem formulation

The water flow into the porous media is driven by the pressure
gradient and describes by the Darcy’s Law

q = k(x, p) grad(p+ z),

where q is the velocity vector, k is the unsaturated hydraulic
conductivity tensor and z represent the influence of the gravity to the
flow.
For the fluid flow in domain Ω, we have following equation

∂Θ

∂t
+ div q = 0, x ∈ Ω,

where Θ is the water content and represents the fraction of porous
medium total volume that is filled with fluid.
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Problem formulation
Havercamp model

As constitutive relations, we use Havercamp model

Θ(p) =
α(Θs −Θr)

α+ |p|β
+ Θr,

km(x, p) = ks(x)
A

A+ |p|ε
+ Θr,

where ks(x) is also known as the saturated hydraulic conductivity.
We use following initial condition

p(x) = p0, x ∈ Ω, t = 0,

and boundary condition

p(x) = p1, x ∈ ΓD,

q · n = 0, x ∈ ΓN .

where ∂Ω = ΓD ∪ ΓN .
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Problem formulation
Discrete Fracture Model

We have following problem in domain Ω{
∂Θm
∂t − div (km(x, pm)(grad pm − z)) + σmf (pm − pf ) = Fm, x ∈ Ω,
∂Θf
∂t − div (kf (x, pf )(grad pf − z))− σfm(pm − pf ) = Ff , x ∈ γ,

∫
Ω

∂Θm

∂t
vm dx+

∫
Ω

(km grad pm, grad vm) dx−
∫

Ω

∂km

∂z
vmdx+

+

∫
Ω
σ(pm − pf ) vmdx =

∫
Ω
Fm vmdx,∫

γ

∂Θf

∂t
vf dx+

∫
γ

(
kf grad pf , grad vf

)
dx−

∫
γ

∂kf

∂z
vfdx−

−
∫
γ
σ(pm − pf ) vfdx =

∫
γ
Ff vfdx.
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Fine grid approximation
Simplified linearization

To approximate nonlinear coeficients we use simplified approximation
from previous time step∫

Ω

Θn+1
m −Θn

m

τ
vm dx+

∫
Ω

(
knm grad pn+1

m , grad vm
)
dx−

∫
Ω

∂knm
∂z

vmdx+

+

∫
Ω
σn(pn+1

m − pn+1
f ) vmdx =

∫
Ω
Fm vmdx,∫

Ω

Θn+1
f −Θn

f

τ
vf dx+

∫
Ω

(
knf grad pn+1

f , grad vf

)
dx−

∫
Ω

∂knf
∂z

vfdx−

−
∫

Ω
σn(pn+1

m − pn+1
f ) vfdx =

∫
Ω
Ff vfdx.
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Fine grid approximation
Matrix form

We can write approximation, in the matrix form as

1

τ

(
Sm 0
0 Sf

)(
pm − p̌m
pf − p̌f

)
+

(
Am +Q −Q
−Q Af +Q

)(
pm
pf

)
=

(
Fm

Ff

)

We assume pm = pf on Ω and using superposi-
tion principle, we obtain

S
p− p̌
τ

+Ap = F

where S = Sm + Sf , A = Am + Af and F =
Fm + Ff .
We built computational grid, which take into
account fractures explicitly
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Coarse grid approximation
GMsFEM algorithm
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Coarse grid approximation
Snapshot space

In the multiscale basis calculations, we first construct a snapshot space
V ωi

snap. The snapshot space is constructed by the solution of the
following local problems

− div(ks(x)∇ψl) = 0 x ∈ ωi (4.1)

with boundary conditions ψl(x) = δj on ∂ωi and δj is the function,
which takes the value 1 at x = xj and zero elsewhere.
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Coarse grid approximation using GMsFEM
Spectral problem

Next, we solve a local spectral problems on the snapshot space

Aϕi = λSϕi,

where the elements of the matrices A = {aij} and S = {sij} are
defined as follow

aij =

∫
ωi

(ks(x)∇u,∇q)dx, sij =

∫
ωi

ks(x)u q dx.

We make transition on the snapshot space

Ãϕ̃i = λS̃ϕ̃i, Ã = PAPT , and S̃ = PSPT .

where P = {ψ0, ψ1, ..., ψJi} and ϕik = PT ϕ̃ik for k = 1, 2, ....
Then, we choose the smallest Mi eigenvalues and use them for
the construction of multiscale basis functions.
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Coarse grid approximation
Multiscale basis functions

The multiscale space is defined as the span of χiϕ
i
k, where χi is the

usual nodal basis function for the node i (linear partition of unity
functions). The number of bases can be different, the accuracy of the
solution can be improved when we increase the number of bases.
Finally, we create following matrix for each ωi

Ri =
[
χiϕ

i
1, . . . , χiϕ

i
Mi
,
]
.

and define a transition matrix from a fine grid to a coarse grid to
reduce the dimension of the problem

R = [R1, R2, ..., RNv ],

where Nv is the number of local domains ωi.
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Coarse grid approximation

We have following coarse grid approximation

Smc
pn+1,m+1
H − pn+1,m

H

τ
+Amc p

n+1,m+1
H = Fmc ,

where Smc = RSmRT , Amc = RAmRT and Fmc = RFm. Here, using
multiscale solution pH , we can reconstruct a fine grid solution
p = RT pH .
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Numerical results
2D fractured medium

We consider water infiltration into porous medium which size 10 meters to 10

meters. As boundary conditions we use p1 = −20.7 on top boundary Γ1 and

p0 = −61.5 for initial conditions. For soil properties we use α = 1.511 × 106,

β = 3.96, Θs = 0.287, Θr = 0.075, A = 1.175 × 106, F = 0, γ = 4.74, km = 0.1 and

kf = 109 We took the maximum time equal to 14 · 10−4 s. and 200 time layers.

Computational domain(left) and fine grid(right) with 31,5 thousands cells and 14,5.
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Numerical results
2D heterogeneous medium

Fine scale solution(top line) and multsicale solution using 16 basis
functions (bottom line). The results presented on 1, 50, 100, 200 time
layers.
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Numerical results
2D fractured medium. L2 error

Number of bases DOFc t1 t50 t100 t200

1 121 86.21 92.92 92.92 92.92
2 242 64.26 87.21 87.21 87.21
4 484 2.16 0.37 0.29 0.29
8 968 0.81 0.13 0.09 0.11
12 1452 0.36 0.07 0.06 0.07
16 1936 0.22 0.06 0.05 0.04

L2 error for different number of basis functions. The size of fine grid
system is 14.5 thousands.
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Numerical results
2D heterogeneous fractured medium

Noew we consider our problem with heterogeneous coefficient km with
kf = 109 for fractures.

Coefficient km.
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Numerical results
2D heterogeneous fractured medium

Fine scale solution(top line) and multsicale solution using 16 basis
functions (bottom line). The results presented on 1, 50, 100, 200 time
layers.
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Numerical results
2D fractured heterogeneous medium. L2 error

Number of bases DOFc t1 t50 t100 t200

1 121 83.43 92.07 92.07 92.07
2 242 6.98 1.59 4.69 5.05
4 484 2.16 0.37 0.26 0.26
8 968 0.81 0.15 0.08 0.09
12 1452 0.44 0.11 0.05 0.05
16 1936 0.28 0.09 0.06 0.01

L2 error for different number of basis functions. The size of fine grid
system is 14.5 thousands.
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Numerical results
3D fractured medium

Now we consider 3D problem in fractured domain. As boundary conditions we use

p1 = −20.7 on top boundary surface, p0 = −61.5 for initial conditions and

km = 102, kf = 109. In this case we took maxinum time equal to 0.0125 s. and 200

time layers.

Computational domain and fine grid with 132,5 thousands cells and 18,6 thousands

vertices.
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Numerical results
3D fractured medium

Fine scale solution(top line) and multsicale solution using 16 basis
functions (bottom line). L2 error 1.03%. The results presented on the
last time layers.
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Numerical results
3D fractured hetrogeneous medium

Now we consider 3D problem in fractured heterogeneous domain. We take

heterogeneous coefficient km and kf = 109. In this case we took maxinum time

equal to 0.0031 s. and 200 time layers.

Coefficient km.
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Numerical results
3D fractured heterogeneous medium

Fine scale solution(top line) and multsicale solution using 16 basis
functions (bottom line). L2 error 1.46%. The results presented on the
last time layers.
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Conclusion

We described Generalized Multiscale Finite Element method for
Richards equation in heterogenous fractured media.

We presented coarse grid approximation using GMsFEM

We made comparison of GMsFEM solution with fine-scale solution.

We presented 2D and 3D results for different number of multiscale
basis functions.
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Thank you for attention
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