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Motivation

Numerical methods achieve stability in many different ways

@ Standard finite element method coercivity & conformity
@ Mixed methods balanced pair of spaces
@ SUPG methods artificially added streamline diffusion
@ DG methods upwind stabilization & jump penalization
@ HDG methods difference between interior & interface unknowns
@ DPG methods stability by automatic test space design

Key Difficulty: Exact inf-sup condition % Discrete inf-sup condition



Ritz-Galerkin Method

Best Approximation Property (Projection Principle)
o If a symmetric, real-valued bilinear form & elliptic on Hilbert space U
a(v,v) > 7|}, e U

it defines an inner product and a norm in U:

vl = v/a(v,v) Weu



Ritz-Galerkin Method
Best Approximation Property (Projection Principle)
o If a symmetric, real-valued bilinear form & elliptic on Hilbert space U
avov) =y |V, Weu
it defines an inner product and a norm in U:
VIl = Va(u,v) Weu

@ Then, the Ritz-Galerkin approximation u, of u € U in a
finite-dimensional subspace U, C U satisfies

a(up,vp) = a(u,vp) Vvp € Uy
which is the orthogonal projection of u onto Up:
a(u —up,vp) =0 Yv, € Uy
@ Thus, it is the best approximation of u in Up:

u—u = min ||ju—v
lju = wnll| = min {[Ju— v



“Petrov-Galerkin” schemes (PG)

PG schemes define different trial and test (Hilbert) spaces

Problem:

Variational form:

Discretization:

[ PDE+

boundary conditions

[ Find v in a trial space U satisfying

b(u,w) = £(w)
for all w in a test space W

Find up,in a discrete trial space Uy, C U satisfying
b(Uh, Wh) = K(Wh)
for all wpin a discrete test space W), c W

For PG schemes, U, # W), in general



Optimal Petrov-Galerkin Method

o Consider a general variational problem
Findue U st b(uyw)=I/w) Ywe W
and let U, C U be a finite-dimensional trial subspace

Up = span{es,...,en}



Optimal Petrov-Galerkin Method

o Consider a general variational problem
Findue U st b(uyw)=I/w) Ywe W
and let U, C U be a finite-dimensional trial subspace
Up = span{es,...,en}
@ The corresponding optimal test space is defined as
WiP* = span{Tey,..., Tey} C W
where the trial-to-test map T : U — W is defined through
(Tu,déw),, = b(u,dow) Vow e W

@ Let each wy, € W;’pt be wj, = Tvy, for some v, € Uy, then
def
b(uh,wh) = b(uh,Twh) = (Tuh,Twh)W :e a(uh,vh)

I(wp) = I(Tvp) & Q(up)



Optimal Petrov-Galerkin Method (cont.)

@ Optimal PG delivers best approximation in generalized energy norms:

lb(u, w)| 12
lull? = a(u,u) = (Tu, Tu)y, = [ Tull%y = { sup 124wl
wew HWHW

e Ellipticity of a(u,u) induces the inf-sup condition on b(u, v)



Optimal Petrov-Galerkin Method (cont.)

Optimal PG delivers best approximation in generalized energy norms:

lb(u, w)| 12
lull? = a(u,u) = (Tu, Tu)y, = [ Tull%y = { sup 124wl
wew HWHW

Ellipticity of a(u, u) induces the inf-sup condition on b(u, v)

Q1: How to determine optimal test function space in a practice?

Al: Computed (almost) automatically within DPG framework!



Optimal Petrov-Galerkin Method (cont.)

@ Optimal PG delivers best approximation in generalized energy norms:

2
> |b(u, w)|
102 = afu ) = (Ta, Tu)y, = [Tl = { sup (72
weWw HWHW
e Ellipticity of a(u,u) induces the inf-sup condition on b(u, v)
@ QI1: How to determine optimal test function space in a practice?
@ Al: Computed (almost) automatically within DPG framework!

e Q2: What if ||| - ||| has harmful parameter dependencies?
e A2: We can have ||| - ||| = ||-]| if we select
|b(u, w)
Wil = [llwll[w.opt = sup ==

ucl ||uHU



Motivation

Stabilized FEMs resolve the numerical instability issue.

Q Least squares FEM (LSFEM)

@ Galerkin method with least squares (G/LS)

@ Streamlined-upwind Petrov-Galerkin (SUPG) method
© Variational multi-scale (VMS) method

@ Discontinuous Petrov-Galerkin method (DPG)

1 — Overly diffuse solutions on coarse meshes, limits f € L?(Q)
2-4 — Requires fine-tuning of penalty/stabilization parameters

5 — Introduces additional degrees of freedom (DOFs)



Target Problem

Convection Dominated Diffusion Problems

Find u such that:
—V - -kVu+a-Vu="f, inQcR>

Boundary conditions:

u=20, onlp,

kVu-n=g, only.

0 £ KESD0, VE£0

o [|K|lLe(n) < llafl=(q)



Proposed Approach

e Derive integral statement on broken Hilbert spaces:

» Test functions in L2(Q) with local higher regularity
= Reduced local regularity requirements on f

Compute 'optimal’ discontinuous test functions that automatically
deliver discrete stability

Reduce DOF number in discrete approximation

» Apply Petrov-Galerkin framework
» Employ classical C%(Q) trial /solution basis functions
> Incorporate piecewise discontinuous test functions

Use first order system description (mixed form)
= enforces normal flux continuity in heterogeneous media



Derivation of the Weak Statement

Step 1: Rewrite BVP in mixed form

Find (u, o) such that:
kVu—0o=0,inQ

—V-.-oc+a-Vu=f,inQ
Boundary conditions:

u=0,onlp

o-n=g,only




Derivation of the Weak Statement

Domain Partition P;, = {Km},’)lf':’“l

DA



Derivation of the Weak Statement

Step 2: On each element K,,,, enforce PDE weakly, i.e.,

Find (u, o) such that, Y(v,w) € L?(Kp) x [L2(Km)]?

/Km{["vu— ol-w—[V-o+(a: Vu)]v}dx = /Km{f v}dx




Derivation of the Weak Statement

Step 3: Apply Green's Identity

Find (u, o) such that, VY(v,w) € HY(Km) x [L2(Km)]?

/m{(mVu—a)'w—i—a'Vv— (a- Vv)u}dx
+72Km{(a n)uv— (o n)v}ds = [ {rviax




Derivation of the Weak Statement

Step 4: Apply boundary & continuity conditions, sum local statements:

Find (u,o) € U(Pp) such that:

B((u,0),(v,w)) = F(v), V(v,w) € V(Pp)

where

B((u,0),(v.w)) = > V {(nvu—a)-w+(o——ua)-w}dx

Km€Ph m

— ?iKm\aQ{(a “N) Uneigh V — (O neigh - ")V}ds}

F(v) = K%?h /Km{fv}dx—kngmmrN{g v}ds]




Derivation of the Weak Statement

Discrete Spaces

€ H(div, Kp)

Km

U(Py) & {(u, o) € H{(Py) x [LA(Q)2: o
A Wo(u\Km)memrD =0, VK, € Ph}
def

V(Phy) = {(v,w) € HY{(Py) x [L2(Q))?:

70(V|Km)\akmmro =0, VK € Ph}
where:

HY(Py) & {v €12(Q): v € HY(Km), YKm € 73,,}



FE Discretization: Trial Space Proposition

Find (up, o4) € U"(Py) such that:

B((un,an), (vh,wh)) = F(vh), Y(va,wp) € V*(Pp)

Trial space U"(P,) € U(P}) consists of piecewise continuous polynomials
of degree p, that is:

N a?(x)) N (aex(x)
up(x) = Z ufei(x), on(x) = { } = { }

@) = e,



FE Discretization: Test Space Construction

For each trial function e;, &4, £y, , compute "optimal’ test functions

(vi,w;j), (vj,w;)), & (vi, W), resp.:
((p,¥), (vi, wi))v(p,) = B((€:,0), (p, ), v(p,r)
((P, r)v(vjij)) V(Pn) — ((07(5Xj’0 ),(P, I’)), V(p’ I’)
((P, I’), (Vk7Wk))V(’Ph) = B((O’ (076}/1())7 (P, I’)), V(p, l’)

LHS is inner product on V(Pj) x V(Pp), i.e.,

(W) ey ™ [ (Rt vpwed axf

Km€Ph m



FE Discretization

Remarks:

e Integral statements governing optimal test functions are
infinite-dimensional problems = test functions computed numerically

e CO trial functions imply that support of test functions is identical to
trial functions and solved locally, i.e., element-by-element solution

e Optimal test functions span subspace V*(Pp) C V(Pp)
= used in FE computation of (up, o).

e (DPG argument) Optimal test functions imply discrete stability

Bjj = B((ei, 0), (vj, wj)) = ((vj, w;), (vi, wi)) v (py)-



FE Discretization: Summary

‘ Continuous-discontinuous Petrov-Galerkin (cDPG) method‘

e Introduction of a hybrid FE method:
» [Petrov-Galerkin Framework]

* Continuous trial functions (Classical C° piecewise polynomials)
* Discontinuous test functions

» [DPG] Optimal test functions = unconditional discrete stability
» [Mixed FEMs/LSFEM] First order systems

e Discrete stability guaranteed without calibrating coefficients

e Comparison to LSFEM

» Weaker regularity required on source and Neumann data
» Sufficient for f to be in the dual of H(P,) and g € H=/2(I'y)



Preliminary Numerical Results

e Test functions may use the same local polynomial degree of
approximation as trial /solution functions

e Optimal h-convergence rates for [|u||1(q). [lull2@) &lloll2@q)

e Comparison alternative methods

» Convection-dominated diffusion problem
» 'Shock’ problem



Comparison Study - cDPG vs. Other Methods

Model problem: convection diffusion problem on the unit square:

Find u such that:

1
—P—eAu+a~Vu = 1in Q=(0,1) x (0,1),
u = 0, on 01,

Focus on convection dominated scenario: Pe = 10° & a = {1,1}T

Thus, convection with 7/4 angle, boundary layers along top/right edges
(width ~ 2-)



Convection Dominated Diffusion Problem

Reference Solution:
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Uniform 4 x 4 Coarse Mesh

SUPG, VMS, G/LS




Graded Mesh

Numerical results for Pe = 10°, starting with graded four-element mesh,
Q=(0,1) x (0,1), p =2, with subsequent uniform refinements

DA



4 x 4 Graded Mesh

SUPG, VMS, and G/LS



Refined Graded Mesh

cDPG, LSFEM SUPG, G/LS
(12k dofs) (16k dofs)

VMS produced highly oscillatory solutions



Distribution
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(Zoomed in) Distribution of u at the Corner
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Comparison Study - 'Shock’ Problem

Convection-diffusion problem on the square Q = (—1,1) x (-1, 1):

Find u such that:

1 X 2x .
—%Au— {0}~Vu = X(l—yz) Ber In £,
u = 0, on 09,




Comparison Study - 'Shock’ Problem

Reference Solution:
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Numerical results for Pe = 10°, uniform meshes, p = 1 for
cDPG and LSFEM, and p = 2 for SUPG, VMS, G/LS.




16 x 16 Uniform Coarse Mesh
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16 x 16 Uniform Coarse Mesh
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Uniform Refined Mesh
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Distribution of u Along the Centerline x =0
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Preliminary Results - Heterogeneous Domain

Convection-diffusion problem

Find u such that:
-V (k(x))Vu+a-Vu=1,inQ=(0,1) x (0,1),

u=20, on 99,

oa:{i},le,andn:kl

@ Solution space built on uniform meshes with polynomial order p = 2

@ Test functions solved using p + 1 = 3 on the same mesh



Preliminary Results - Heterogeneous Domain
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Preliminary Results - Heterogeneous Domain




Distribution of u along y = %
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Concluding Remarks

@ Introduced ybrid continuous-discontinuous Petrov-Galerkin method.
» Solution/trial functions are piecewise continuous
» Weight/test functions are piecewise discontinuous.
@ DPG approach: test functions computed automatically to establish
numerically stable FE approximations
@ Support of each discontinuous test function is identical to its
corresponding continuous trial function
@ Local test-function contribution computed locally (i.e. decoupled)

» Sufficient accuracy by using corresponding p-level of trial function



Concluding Remarks

e Formulation allows for lower regularity of f (in dual of H*(P}))
compared to LSFEM (f € L2(Q))

@ Numerical solutions do not show overly diffuse LSFEM solutions

@ Numerical results compete with (SUPG, VMS, G/LS)
» Show no oscillations at boundary layers.

Remark:

Weaker trial functions for o than C°, i.e., use trial functions with
continuous normal fluxes discontinuous tangential fluxes across element
boundaries (~ Raviart-Thomas/Brezzi-Douglas-Marini approach) deliver
similar results to those reported herein
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