Maximum principle in multiphase flow problems

Novikov Konstantin

August, 2018

Outline

- multiphase flow model formulations
- 2 differential maximum principle summary
- 3 analytical discrete maximum principle
- 4 numerical experiments

Two-phase flow model

$$egin{aligned} rac{\partial}{\partial t} \left(rac{\phi s_{lpha}}{b_{lpha}}
ight) + div \left(rac{1}{b_{lpha}} u_{lpha}
ight) = q_{lpha}, \ u_{lpha} &= -rac{k_{rlpha}}{\mu_{lpha}} \mathbb{K} (
abla p_{lpha} -
ho_{lpha} g
abla z), lpha &= w, o \end{aligned}$$

$$p_o - p_w = p_c(s_w), s_o + s_w = 1$$

- $\alpha = w, o \text{phase (water, oil)}$
- \mathbf{s}_{α} saturation
- lacksquare p_{lpha} pressure
- u_{α} Darcy velocity
- $lackbox{b}_{\alpha}$ formation factor
- q_{α} sources
- + initial and boundary conditions

- p_c capillary pressure
- μ_{α} viscosity
- $lacktriangleq k_{rlpha}$ relative permeability
- lacktriangle \mathbb{K} absolute permeability
- ρ_{α} density

Three-phase flow model

$$\begin{split} &\frac{\partial}{\partial t} \left(\frac{\phi s_{\alpha}}{b_{\alpha}} \right) + div \left(\frac{1}{b_{\alpha}} u_{\alpha} \right) = q_{\alpha}, \alpha = w, o, \\ &\frac{\partial}{\partial t} \left(\frac{\phi s_{g}}{b_{g}} - \frac{r_{s} s_{o}}{b_{o}} \right) + div \left(\frac{1}{b_{g}} u_{g} + \frac{r_{s}}{b_{o}} u_{o} \right) = q_{g}, \\ &u_{\alpha} = -\frac{k_{r\alpha}}{\mu_{\alpha}} \mathbb{K} (\nabla p_{\alpha} - \rho_{\alpha} g \nabla z), \alpha = w, o, g \\ &s_{w} + s_{o} + s_{g} = 1, p_{\alpha} - p_{o} = p_{c\alpha}, \alpha = w, o, g, \end{split}$$

- \mathbf{s}_{α} saturation
- p_{α} pressure
- u_{α} Darcy velocity
- $lackbox{b}_{lpha}$ formation factor
- \mathbf{q}_{α} sources
- + initial and boundary conditions

- \blacksquare μ_{α} viscosity
- $k_{r\alpha}$ rel. permeability
- K abs. permeability
- ρ_{α} density

Maximum principle

Differential maximum principles: summary

	two-phase			three-phase		
	p_{α}	$p_o + \widetilde{p}$	s_{α}	p_{α}	$p_o + \widetilde{p}$	
$p_{cwo}\equiv 0, p_{cgo}\equiv 0$						
$\exists \widetilde{p} : \nabla \widetilde{p} = f_w \nabla p_{cwo} + f_g \nabla p_{cgo}$						
$\mu_lpha \equiv {\it const}$						
$b_lpha \equiv 1$						
$\phi \equiv {\it const}$						

- required by a theorem
- not required by a theorem

Finite volume scheme

$$\mathbb{K}n_{f} = l_{f} = \alpha_{1}\overrightarrow{P_{+}P_{+1}} + \alpha_{2}\overrightarrow{P_{+}P_{+2}}$$

$$-\mathbb{K}n_{f} = -l_{f} = \beta_{1}\overrightarrow{P_{+}P_{-1}} + \beta_{2}\overrightarrow{P_{+}P_{-2}}$$

$$q_{1} = -\mathbb{K}\nabla p \cdot n_{f} = \nabla p \cdot l_{f} =$$

$$-\nabla p \left(\alpha_{1}\overrightarrow{P_{+}P_{+1}} + \alpha_{2}\overrightarrow{P_{+}P_{+2}}\right) =$$

$$\alpha_{1}(p_{+,1} - p_{+}) + \alpha_{2}(p_{+,2} - p_{+})$$

$$q = \mu_{1}q_{1} + \mu_{2}(-q_{2})$$

$$\mu_{1}q_{1} + \mu_{2}q_{2} = 0$$

$$\mu_{1} + \mu_{2} = 1$$

[Lipnikov K., Svyatskiy D., Vassilevsky Yu. Minimal stencil finite volume scheme with the discrete maximum principle // Russian Journal of Numerical Analysis and Mathematical Modelling. 27(4). 2012.]

Differential and discrete maximum principles for pressure in two-phase flow model

	Differential			Discrete		
$p_c \equiv 0$						
$\mu_{lpha} \equiv {\it const}$						
$b_lpha \equiv 1$						
$\phi \equiv \mathit{const}$						

- required by a theorem
- not required by a theorem

Numerical experiment #1

- 1 zero capillary pressure $p_c \equiv 0$
- 2 constant viscosities $\mu_{\alpha} = const$
- $oxed{3}$ incompressibility $b_{lpha}=1$
- **4** constant porosity $\phi \equiv const$
- 5 Absolute permeability $\mathbb{K} = R_z(-\theta_z) diag(k_1, k_2, k_3) R_z(\theta_z)$, where
 - $k_1 = k_3 = 100, k_2 = 0.1,$
 - $\theta_z = 112.5^\circ$,
 - $R_z(\alpha)$ is the matrix of rotation in *xy*-plane.

Numerical pressures

Puc.: Pressure after 2000 model days for different flux discretization schemes.

Experimental discrete maximum principle for nonconstant parameters

	Differential			Discrete		
$p_c \equiv 0$						
$\mu_{lpha} \equiv {\it const}$						
$b_lpha \equiv 1$						
$\phi \equiv \mathit{const}$						

- required by a theorem
- not required by a theorem

Summary

- 3 differential maximum principles for two-phase flow model and 2 for three-phase flow model have been proven.
- The discrete maximum principle for numerical pressure obtained using nonlinear multipoint scheme has been proven.
- The discrete maximum principle require additional assumption on model coefficients.
- Numerical experiments support possible existence of the discrete maximum principle for fewer assumptions.

Numerical experiment #2

- 1 zero capillary pressure $p_c \equiv 0$
- 2 constant viscosities $\mu_{\alpha} = const$
- $oxed{3}$ incompressibility $b_{lpha}=1$
- **4** constant porosity $\phi \equiv const$
- 5 Absolute permeability $\mathbb{K} = R_z(-\theta_z) diag(k_1, k_2, k_3) R_z(\theta_z)$, where
 - $k_1 = k_3 = 100, k_2 = 0.1,$
 - $\theta_z = 112.5^\circ$,
 - $R_z(\alpha)$ is the matrix of rotation in *xy*-plane.

Numerical pressures

Puc.: Pressure after 100 model days for different flux discretization schemes.

Numerical saturations

Puc.: Water saturation after 100 model days for different flux discretization schemes. Initial saturation is s(0) = 0.15.

Two-phase flow model equations (no gravity)

$$\begin{cases} \frac{\partial}{\partial t} \left(\frac{\phi \rho_{\alpha} s_{\alpha}}{b_{\alpha}} \right) - div \left(\frac{\rho_{\alpha}}{b_{\alpha}} \frac{k_{r_{\alpha}}}{\mu_{\alpha}} \mathbb{K} \nabla p_{\alpha} \right) = q_{\alpha} \text{ in } \Omega \times (0, T) \\ p_{o} - p_{w} = p_{c}(s_{w}) \\ s_{o} + s_{w} = 1 \end{cases}$$

Differential maximum principle. Assumptions(1).

- zero capillary pressure $p_c \equiv 0$
- lacksquare strictly elliptic absolute permeability $\mathbb K$
- smooth enough $b_{\alpha}, \lambda_{\alpha}, \alpha = w, o$
- no incompressibility assumption: $b_{\alpha} \not\equiv const$
- no constant porosity assumption: $\phi \not\equiv const$
- no constant viscosity assumption: $\mu_{\alpha} \not\equiv const$

Differential maximum principle(1). Pressure.

•
$$b_o q_o + b_w q_w \le 0$$
 in $\Omega \times [0, T] \Rightarrow$

$$\sup_{\Omega\times[0,T]}p_{\alpha}\leq\sup_{\partial\Omega\times[0,T)}p_{\alpha}$$

•
$$b_o q_o + b_w q_w \ge 0$$
 in $\Omega \times [0, T] \Rightarrow$

$$\inf_{\Omega\times[0,T]}p_{\alpha}\geq\inf_{\partial\Omega\times[0,T)}p_{\alpha},\alpha=w,o$$

Differential maximum principle. Assumptions(2)

- fractional flows $f_{\alpha} = \frac{\lambda_{\alpha}}{\lambda_{w} + \lambda_{o}}$, $\alpha = w, o$ depend solely on s_{w}
 - (implies constant viscosities, since $\lambda_{\alpha} = \frac{k_{r\alpha}}{\mu_{\alpha}}$ and $\mu_{\alpha} = \mu_{\alpha}(p_{\alpha})$)
- lacksquare there exists function \widetilde{p} such that $abla \widetilde{p} = f_{\sf w}
 abla p_c[1]$,
- $lue{}$ strictly elliptic absolute permeability $\mathbb K$
- smooth enough $b_{\alpha}, \lambda_{\alpha}, \alpha = w, o$
- no incompressibility assumption: $b_{\alpha} \not\equiv const$
- lacktriangle no constant porosity assumption: $\phi \not\equiv const$
- [1] Chen Z. Formulations and Numerical Methods of the Black Oil Model in Porous Media. SIAM J. Numer. Anal., 2000; 38(2):489–514.

Differential maximum principle(2). Pressure.

■
$$b_o q_o + b_w q_w \le 0$$
 in $\Omega \times [0, T] \Rightarrow$

$$\sup_{\Omega \times [0, T]} p \le \sup_{\partial \Omega \times [0, T)} p$$

•
$$b_o q_o + b_w q_w \ge 0$$
 in $\Omega \times [0, T] \Rightarrow$

$$\inf_{\Omega\times[0,T]}p\geq\inf_{\partial\Omega\times[0,T)}p$$

where
$$p = p_o - \widetilde{p}$$
.

Differential maximum principle. Assumptions(3)

- constant viscosities $\mu_{\alpha} = const$, $\alpha = w$, o
- incompressibility: $b_{\alpha} = 1, \alpha = w, o$
- constant porosity: $\phi = const$,
- lacktriangle relative permeabilities $k_{r\alpha}$ are monotonic functions of s_w
- $lackbox{}{\hspace{0.1cm}} p_c$ is monotonically decreasing function of s_w
- $lue{}$ strictly elliptic absolute permeability $\mathbb K$
- smooth enough $k_{r\alpha}$, $\alpha = w$, o
- no constant capillary pressure assumption: $p_c \not\equiv 0$,

Differential maximum principle(3). Saturations.

$$q_w \leq 0, q_o \geq 0 \text{ in } \Omega \times [0, T] \Rightarrow$$

$$\sup_{\Omega \times [0,T]} s_w \leq \sup_{\partial \Omega \times [0,T)} s_w, \qquad \inf_{\Omega \times [0,t]} s_o \geq \inf_{\partial \Omega \times [0,T)} s_o$$

$$q_w \ge 0, q_o \le 0 \text{ in } \Omega \times [0, T] \Rightarrow$$

$$\sup_{\Omega\times[0,T]}s_o\leq\sup_{\partial\Omega\times[0,T)}s_o,\qquad\inf_{\Omega\times[0,t]}s_w\geq\inf_{\partial\Omega\times[0,T)}s_w$$

Three-phase flow (no gravity)

$$\begin{cases} \frac{\partial}{\partial t} \left(\frac{\phi \rho_{w} s_{w}}{b_{w}} \right) - div \left(\frac{\rho_{w}}{b_{w}} \frac{k_{rw}}{\mu_{w}} \mathbb{K} \nabla p_{w} \right) = q_{w} \\ \frac{\partial}{\partial t} \left(\frac{\phi \rho_{o} s_{o}}{b_{o}} \right) - div \left(\frac{\rho_{o}}{b_{o}} \frac{k_{ro}}{\mu_{o}} \mathbb{K} \nabla p_{o} \right) = q_{o} \\ \frac{\partial}{\partial t} \left(\frac{\phi \rho_{g} s_{g}}{b_{g}} + \frac{r_{so} \rho_{o} s_{o}}{b_{o}} \right) - div \left(\frac{\rho_{g}}{b_{g}} \frac{k_{rg}}{\mu_{g}} \mathbb{K} \nabla p_{g} + \right. \\ \left. + \frac{r_{so} \rho_{o}}{b_{o}} \frac{k_{ro}}{\mu_{o}} \mathbb{K} \nabla p_{o} \right) = q_{g} \\ s_{o} + s_{w} + s_{g} = 1 \\ p_{\alpha} - p_{o} = p_{c\alpha o}, \alpha = g, w \end{cases}$$

Differential maximum principle. Assumptions(1)

- $p_{c\alpha o} \equiv 0, \alpha = w, g$
- lacksquare strictly elliptic absolute permeability $\mathbb K$
- smooth enough b_{α} , λ_{α} , $\alpha = w$, o
- no incompressibility assumption: $b_{\alpha} \not\equiv const$
- no constant porosity assumption: $\phi \not\equiv const$
- no constant viscosity assumption: $\mu_{\alpha} \not\equiv const$

Differential maximum principle(1). Pressure

■
$$b_o q_o + b_w q_w + b_g q_g - b_g r_{so} q_o \le 0$$
 in $\Omega \times [0, T] \Rightarrow$

$$\sup_{\Omega \times [0, T]} p_\alpha \le \sup_{\partial \Omega \times [0, T)} p_\alpha$$

■
$$b_o q_o + b_w q_w + b_g q_g - b_g r_{so} q_o \ge 0$$
 in $\Omega \times [0, T] \Rightarrow$

$$\inf_{\Omega \times [0, T]} p_\alpha \ge \inf_{\partial \Omega \times [0, T)} p_\alpha, \alpha = w, o, g$$

Differential maximum principle. Assumptions(2)

- fractional flows $f_{\alpha} = \frac{\lambda_{\alpha}}{\lambda_{w} + \lambda_{o} + \lambda_{g}}$, $\alpha = w, g, o$ depend solely on s_{w} and s_{o}
 - (implies constant viscosities, since $\lambda_{\alpha}=\frac{k_{r\alpha}}{\mu_{\alpha}}$ and $\mu_{\alpha}=\mu_{\alpha}(p_{\alpha})$)
- lacktriangle there exits such function \widetilde{p} that $abla\widetilde{p}=f_w
 abla p_{cwo}+f_g
 abla p_{cgo}[1]$
- $lue{}$ strictly elliptic absolute permeability $\mathbb K$
- smooth enough b_{α} , λ_{α} , $\alpha = w$, o
- no incompressibility assumption: $b_{\alpha} \not\equiv const$
- lacktriangleright no constant porosity assumption: $\phi \not\equiv const$
- [1] Chen Z. Formulations and Numerical Methods of the Black Oil Model in Porous Media. SIAM J. Numer. Anal., 2000; 38(2):489–514.

Differential maximum principle(2). Pressure.

■
$$b_o q_o + b_w q_w + b_g q_g - b_g r_{so} q_o \le 0$$
 in $\Omega \times [0, T] \Rightarrow$

$$\sup_{\Omega \times [0, T]} p \le \sup_{\partial \Omega \times [0, T)} p$$

■
$$b_o q_o + b_w q_w + b_g q_g - b_g r_{so} q_o \ge 0$$
 in $\Omega \times [0, T] \Rightarrow$

$$\inf_{\Omega \times [0, T]} p \ge \inf_{\partial \Omega \times [0, T)} p$$

where
$$p = p_o + \widetilde{p}$$
.

Discrete maximum principle. Assumptions.

- zero capillary pressure: $p_c \equiv 0$
- constant porosity: $\phi \equiv const$
- incompressibility: $b_{\alpha} = 1, \alpha = w, o$
- K is strictly elliptic
- lacksquare no constant viscosities assumption: $\mu_{lpha} \not\equiv 0$

Discrete maximum principle. Pressure.

■ Let \mathcal{T}_{inj} be a set of cells where $q_w + q_o \ge 0$ and \mathcal{T}_B be a set of boundary faces. Then

$$\max_{T \in \mathcal{T} \setminus (\mathcal{T}_{inj} \cup \mathcal{T}_B)} p_T \leq p_{max} = \max_{\mathcal{T}_{inj} \cup \mathcal{T}_B} p_T.$$

■ Let \mathcal{T}_{prod} be the set of cells where $q_w + q_o \leq 0$ and \mathcal{T}_B be a set of boundary faces. Then

$$\min_{T \in \mathcal{T} \setminus (\mathcal{T}_{prod} \cup \mathcal{T}_B)} p_T \leq p_{min} = \min_{\mathcal{T}_{prod} \cup \mathcal{T}_B} p_T$$

