Machine learning in numerical
simulations

lvan Oseledets

Skolkovo Institute of Science and Technology

Numerical simulation

e Take a model of a physical/chemical/biological
system

e Construct discretization

e Solve resulting system of equations

Numerical simulation

e Model can be inaccurate or unavailable
e Discretization maybe unstable/difficult to construct
e Solver can be slow

Data-driven approaches

e Recover the model from experimental observations

e Approximate output quantities directly: surrogate models

e Optimize the given numerical simulator in a “black-box”
way

e Approximate probability distributions instead of single
solutions

Classical supervised machine learning

e Given input data, predict
output data

e Setup a parametric class of Y; =~ f(SBZ, 6’)
models

e Solve a non-convex
optimization problem

Why ML is so easy to use

e Development of special
frameworks (Tensorflow,
Pytorch)

e Automatic differentiation: you
never need to compute
gradients (automatic is not
symbolic!)

e Stochastic optimization

f

TensorFlow

PYTHRCH

Deep Learning with PyTorch

Automatic differentiation: metatheorem (Baur-Strassen)

If we can evaluate f(x) in N operations, we can
evaluate the gradient in less that cN operations.

You can differentiate any code!

Automatic differentiation frameworks

e They existed for a long time (Fortran, C++), but
difficult to use and not so efficient.

e Special frameworks for ML: Tensorflow,
Pytorch (“metalanguages”)

e You write a code a little bit differently, but you
get free GPU dispatch and gradients for free

What you can do: optimizing preconditioners

e Solve discretized PDE A{L‘ p— f

using multigrid method

e Need to define
projection/restriction == e
SMOOTHER B ol
& RESIDUAL "1%) — "~_~'§3Jf.._~A SMOOTHER
operators N 2

e P, R come from prior i
knowledge

What you can do: optimizing preconditioners

e Minimize approximation
of spectral radius
e Stochastic gradient

method
e Autodiff

Spectral radius p

Grid size Linear AMG DMG
7 0.169132 0.194611 0.079188
15 0.190049 0.208299 0.086569
g1 0.195635 0.218042 0.131717
63 0.197055 0.259309 0.143555
127 0.197412 0.396509 0.144278
255 0.197501 0.377769 0.147190

Deep Multigrid: learning prolongation and restriction matrices
A Katrutsa, T Daulbaev, | Oseledets - arXiv preprint arXiv:1711.03825, 2017 -

arxiv.org

https://arxiv.org/abs/1711.03825
https://scholar.google.ru/citations?user=mKP8BpEAAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=5kMqBQEAAAAJ&hl=ru&oi=sra

Approximation of multivariate functions

In the example, the we optimized the known
algorithm

This is called differentiable programming
What if we do not know the algorithm?

We need a class of parametrized models

Neural networks

e Deep neural networks are
extremely efficient for
Image, text and audio
processing

e Feed-forward: pus
superposition of
linear/pointwise-nonlinear
functions

Yk+1 = f(Wkﬂfk + b), Yout = YN -

Convolutional neural networks

e Convolutional neural
networks: Toeplitz
matrices for W

e They are useful to work
with piecewise-smooth
objects (images)

Input
24x24

Feature maps
4@20x20

T

Feature maps Feature maps Feature maps Output
4@10x10

[F=—==]

\F;

Convolution

Subsampling

£u

8@8x8

Convolution

8@4x4 20@1x1

e

Subsampling Convolution

Example: Topology optimization (Sosnovik, Oseledets)

|

§ Y

Fgu 1: The design domain, boundary conditions, and external load for the optimization of a half MBB

) Iteration 3 (b) Tteration 13 { s.t. V(iB)/VE) = fO

KU =F
o € {05 1), g =1...N

(c) Iteration 30 (d) Tteration 80

-

M=

Ej(z;)uj kou;

Il
—

5

Example: Topology optimization (Sosnovik, Oseledets)

|

e |dea: learn a mapping
from current iterate
and its gradient to the

final solution
e Similar to image A) = =
Segmentation prObIem [conv +RelU | | Dropout [Pooling] Upsampling | | Conv + Sigmoid

Neural networks for topology optimization

| Sosnovik, | Oseledets - arXiv preprint arXiv:1709.09578, 2017 - arxiv.org

https://arxiv.org/abs/1709.09578
https://scholar.google.ru/citations?user=brUsNccAAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=5kMqBQEAAAAJ&hl=ru&oi=sra

Example: Topology optimization (Sosnovik, Oseledets)

Input Image Input Gradient Prediction Ground Truth

Figure 4: Top: SIMP is stopped after 8 iterations, binary accuracy 0.96, mean IoU 0.92; Bottom: solver is
stopped after 5 iterations, binary accuracy 0.98, mean IoU 0.95.

Iteration
Method 5 10 15 20 30 40 50 60 80
Thresholding | 929 954 96.5 97.1 977 981 984 986 989
CNN P(5) 95.8 973 97.7 979 982 984 985 98.6 98.7
CNN P(10) 954 97.6 98.1 984 987 989 99.0 99.0 99.0
CNN P(30) 92.7 963 978 98.5 99.0 99.2 994 99.5 99.6
CNN U][1,100] | 947 96.8 97.7 98.2 987 99.0 99.3 994 99.6

|dea for new architectures

e We can reutilize popular formats (what we
have seen in the literature) to create new
learnable architectures

e Example: hierarchical matrices for mapping
iInput to the output.

Resnet: popular architecture

e Instead of learning y = f(x)
e We learn residual connection ¥ = f(z) +=x
e Motivated by multigrid!

weight layer
F(x) "rehl

weight layer

X

identity

Multiscale neural network

e We can reutilize popular formats (what we
have seen in the literature) to create new
learnable architectures

e Example: hierarchical matrices for mapping
iInput to the output.

A multiscale neural network based on hierarchical
maitrices

Y Fan, L Lin, L Ying, L Zepeda-Nunez - arXiv preprint
arXiv:1807.01883, 2018 - arxiv.org

https://arxiv.org/abs/1807.01883
https://arxiv.org/abs/1807.01883
https://scholar.google.ru/citations?user=jaIUPk4AAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=zE8c3-sAAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=OwA3zyMAAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=qbMVyzQAAAAJ&hl=ru&oi=sra

Multiscale neural network: idea

1=29 ————

Zga) /\ — BO).(Zz H
l 5 Adjacent
) - — Z(i. — A /\ = Interaction

Parent-children
\ relationship

- T
(a) Nlustration of computational domain for an interior segment (up)
and a boundary segment (down).

(b) Hierarchical partition
of matrix A
off-diagonal [= 2

off-diagonal | = 4 adjacent

off-diagonal | = 3

= s
. B
o — + m |
-
I 1]
= I-I_
I i
A2 A®) AW Alad)

(c) Decomposition of matrix A

Figure 1: Hierarchical partition of computational domain, its corresponding partition of matrix A and the
decomposition of matrix A.

Multiscale neural network: idea

(—%A - V(z)) Vi(z) = es(z), T €N =[-1,1)¢

sum ne
- Reshape - /le(x)'lpﬂ (:Z:)d:r - 67'.7’ p(x) = Z |'¢Z (:L')|2’
____LCl-linear =1
Reshape
\>sum

Adjacent
LCK-linear

Ciiiuinsinsiaaaald Wi i A

(FFFF (7 FFFF T

Reshape Replicate

LCR-linear

Replicate

Figure 5: Neural network architecture for the matrix-vector multiplication of 7{2-matrices.

Wavenet

e \Vavelets as neural
network architecture

Otrit @ @ © 0O O 00090000 O©EOOG OO

AR

e ©00 0000000000000 00

A —

e @0 000 00000000000

y

' 0000000000000 000

|
NN NNNN

it @ © © © O 000000000 e O

©)
@)

@)
@)

O
@)

;

Tensor decompositions and neural networks

e Connections between tensor decompositions
and special neural networks

e \We can prove results on deep networks using
tensor analysis

Expressive power of recurrent neural networks

V Khrulkov, A Novikov, | Oseledets - ICLR 2018

On the expressive power of deep learning: A tensor analysis

N Cohen, O Sharir, A Shashua - Conference on Learning Theory, 2016 - jmlr.org

https://arxiv.org/abs/1711.00811
https://scholar.google.ru/citations?user=GS5HTlkAAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=jMUkLqwAAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=5kMqBQEAAAAJ&hl=ru&oi=sra
http://www.jmlr.org/proceedings/papers/v49/cohen16.pdf
https://scholar.google.ru/citations?user=DmzoCRMAAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=2y5Am34AAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=dwi5wvYAAAAJ&hl=ru&oi=sra

Tensor decompositions and neural networks

éZ—-E]—\,\/ /)Zﬁ//&ﬂf
2 % Al % &) %thl
L L '
g 2 j%;!;g/ :
Z;—F Altyy s tdl)
S eoard
C-1-07 . =
@/E s VR z
oLl T I
oL 4 Pl Ty = % /%9% 7 o

Unsupervised learning

e All the previous approaches deal with
supervised learning, when the answer is known

e Unsupervised learning is becoming key
technique for manifold learning and
dimensionality reduction, and also uncertainty
quantification

Learning probability distributions

e Given data points 14 ..., LN that are
sampled from a probability distribution p, learn
this probabillity distribution

e Key problem in UQ, inverse problems, data
assimilation

e (Generative adversarial network (GAN) gaining
popularity

Generative adversarial networks

e Proposed by Goodfellow et. al in 2014

e |dea is to approximate this distribution as a
parametrized map from a known distribution

e An additional function (discriminator) is used to
distinguish between fake and real data

e They learn an adversarial game

Reminder

e (Game theoretic approach E

e Generator learns to mimic the target .
distribution by generating samples .

e Discriminator learns to distinguish real and
fake data

p(x is real)

Deep Prior (Ulyanov, Lempitsky, Vedaldi)

e Overparametrization is not always the issue

e \We assume that image is generate by a CNN

e \We learn the parameters of CNN by minimizing
the cost functional (i.e., for denoising) for 1
iImage!

meinE(fG(z)v mO)

Problems

e Learning can be slow

e Sensitive to hyperparameters (may
not converge in many cases)

e Smoothness, monotonicity, etc. are e
not guaranteed for neural-network
based models

e Loss surfaces can be really
complicated

Adversarial perturbations

e Adversarial perturbations easily fool
many state of the art networks

e Adding a perturbation of a small norm
can force misclassification

arg max p(y|xr; 0) # argmax p(y|x + €;0)

Isjthis}a pigeon?

This work is supported by Ministry of Education and Science of the Russian Federation (grant 14.756.31.0001)

Universal adversarial perturbations

e Mosaavi et al (2017) proposed universal
perturbations: adding a single noise image allows
one to fool the network in many (~70%) cases

e They were also shown to generalize across networks

really well

Universal adversarial perturbations, Moosavi et al, CVPR 2017

Our results (Khrulkov, Oseledets, CVPR 2018)

e Interpretable easy algorithm VGG-16 VGG-19 ResNet50
e Relatively fast - only few minutes to VGG-16 0.52 0.60 039
construct a perturbation VGG-19 0.48 0.60 0.38

e \We attack low-level features ResNet50 0.41 0.47 0.44

