
Machine learning in numerical
simulations

Ivan Oseledets

Numerical simulation

● Take a model of a physical/chemical/biological
system

● Construct discretization
● Solve resulting system of equations

Numerical simulation

● Model can be inaccurate or unavailable
● Discretization maybe unstable/difficult to construct
● Solver can be slow

Data-driven approaches

● Recover the model from experimental observations
● Approximate output quantities directly: surrogate models
● Optimize the given numerical simulator in a “black-box”

way
● Approximate probability distributions instead of single

solutions

Classical supervised machine learning

● Given input data, predict
output data

● Setup a parametric class of
models

● Solve a non-convex
optimization problem

Why ML is so easy to use

● Development of special
frameworks (Tensorflow,
Pytorch)

● Automatic differentiation: you
never need to compute
gradients (automatic is not
symbolic!)

● Stochastic optimization

Automatic differentiation: metatheorem (Baur-Strassen)

If we can evaluate f(x) in N operations, we can
evaluate the gradient in less that cN operations.

You can differentiate any code!

Automatic differentiation frameworks

● They existed for a long time (Fortran, C++), but
difficult to use and not so efficient.

● Special frameworks for ML: Tensorflow,
Pytorch (“metalanguages”)

● You write a code a little bit differently, but you
get free GPU dispatch and gradients for free

What you can do: optimizing preconditioners

● Solve discretized PDE
using multigrid method

● Need to define
projection/restriction
operators

● P, R come from prior
knowledge

What you can do: optimizing preconditioners

● Minimize approximation
of spectral radius

● Stochastic gradient
method

● Autodiff

Deep Multigrid: learning prolongation and restriction matrices
A Katrutsa, T Daulbaev, I Oseledets - arXiv preprint arXiv:1711.03825, 2017 -
arxiv.org

https://arxiv.org/abs/1711.03825
https://scholar.google.ru/citations?user=mKP8BpEAAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=5kMqBQEAAAAJ&hl=ru&oi=sra

Approximation of multivariate functions

● In the example, the we optimized the known
algorithm

● This is called differentiable programming
● What if we do not know the algorithm?
● We need a class of parametrized models

Neural networks

● Deep neural networks are
extremely efficient for
image, text and audio
processing

● Feed-forward:
superposition of
linear/pointwise-nonlinear
functions

Convolutional neural networks

● Convolutional neural
networks: Toeplitz
matrices for W

● They are useful to work
with piecewise-smooth
objects (images)

Example: Topology optimization (Sosnovik, Oseledets)

Example: Topology optimization (Sosnovik, Oseledets)

● Idea: learn a mapping
from current iterate
and its gradient to the
final solution

● Similar to image
segmentation problem

Neural networks for topology optimization
I Sosnovik, I Oseledets - arXiv preprint arXiv:1709.09578, 2017 - arxiv.org

https://arxiv.org/abs/1709.09578
https://scholar.google.ru/citations?user=brUsNccAAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=5kMqBQEAAAAJ&hl=ru&oi=sra

Example: Topology optimization (Sosnovik, Oseledets)

Idea for new architectures

● We can reutilize popular formats (what we
have seen in the literature) to create new
learnable architectures

● Example: hierarchical matrices for mapping
input to the output.

Resnet: popular architecture

● Instead of learning
● We learn residual connection
● Motivated by multigrid!

Multiscale neural network

● We can reutilize popular formats (what we
have seen in the literature) to create new
learnable architectures

● Example: hierarchical matrices for mapping
input to the output.

A multiscale neural network based on hierarchical
matrices
Y Fan, L Lin, L Ying, L Zepeda-Núnez - arXiv preprint
arXiv:1807.01883, 2018 - arxiv.org

https://arxiv.org/abs/1807.01883
https://arxiv.org/abs/1807.01883
https://scholar.google.ru/citations?user=jaIUPk4AAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=zE8c3-sAAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=OwA3zyMAAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=qbMVyzQAAAAJ&hl=ru&oi=sra

Multiscale neural network: idea

Multiscale neural network: idea

Wavenet

● Wavelets as neural
network architecture

Tensor decompositions and neural networks

● Connections between tensor decompositions
and special neural networks

● We can prove results on deep networks using
tensor analysis

Expressive power of recurrent neural networks
V Khrulkov, A Novikov, I Oseledets - ICLR 2018
On the expressive power of deep learning: A tensor analysis
N Cohen, O Sharir, A Shashua - Conference on Learning Theory, 2016 - jmlr.org

https://arxiv.org/abs/1711.00811
https://scholar.google.ru/citations?user=GS5HTlkAAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=jMUkLqwAAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=5kMqBQEAAAAJ&hl=ru&oi=sra
http://www.jmlr.org/proceedings/papers/v49/cohen16.pdf
https://scholar.google.ru/citations?user=DmzoCRMAAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=2y5Am34AAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=dwi5wvYAAAAJ&hl=ru&oi=sra

Tensor decompositions and neural networks

Unsupervised learning

● All the previous approaches deal with
supervised learning, when the answer is known

● Unsupervised learning is becoming key
technique for manifold learning and
dimensionality reduction, and also uncertainty
quantification

Learning probability distributions

● Given data points that are
sampled from a probability distribution p, learn
this probability distribution

● Key problem in UQ, inverse problems, data
assimilation

● Generative adversarial network (GAN) gaining
popularity

Generative adversarial networks

● Proposed by Goodfellow et. al in 2014
● Idea is to approximate this distribution as a

parametrized map from a known distribution
● An additional function (discriminator) is used to

distinguish between fake and real data
● They learn an adversarial game

Reminder

● Game theoretic approach
● Generator learns to mimic the target

distribution by generating samples
● Discriminator learns to distinguish real and

fake data

Deep Prior (Ulyanov, Lempitsky, Vedaldi)

● Overparametrization is not always the issue
● We assume that image is generate by a CNN
● We learn the parameters of CNN by minimizing

the cost functional (i.e., for denoising) for 1
image!

Problems

● Learning can be slow
● Sensitive to hyperparameters (may

not converge in many cases)
● Smoothness, monotonicity, etc. are

not guaranteed for neural-network
based models

● Loss surfaces can be really
complicated

Adversarial perturbations
● Adversarial perturbations easily fool

many state of the art networks
● Adding a perturbation of a small norm

can force misclassification

This work is supported by Ministry of Education and Science of the Russian Federation (grant 14.756.31.0001)

Universal adversarial perturbations
● Mosaavi et al (2017) proposed universal

perturbations: adding a single noise image allows
one to fool the network in many (~70%) cases

● They were also shown to generalize across networks
really well

Universal adversarial perturbations, Moosavi et al, CVPR 2017

Our results (Khrulkov, Oseledets, CVPR 2018)
● Interpretable easy algorithm
● Relatively fast - only few minutes to

construct a perturbation
● We attack low-level features

