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Numerical simulation 

● Take a model of a physical/chemical/biological 
system 

● Construct discretization 
● Solve resulting system of equations



Numerical simulation 

● Model can be inaccurate or unavailable
● Discretization maybe unstable/difficult to construct
● Solver can be slow



Data-driven approaches

● Recover the model from experimental observations
● Approximate output quantities directly: surrogate models 
● Optimize the given numerical simulator in a “black-box” 

way
● Approximate probability distributions instead of single 

solutions 



Classical supervised machine learning

● Given input data, predict 
output data

● Setup a parametric class of 
models

● Solve a non-convex 
optimization problem



Why ML is so easy to use

● Development of special 
frameworks (Tensorflow, 
Pytorch)

● Automatic differentiation: you 
never need to compute 
gradients (automatic is not 
symbolic!)

● Stochastic optimization



Automatic differentiation: metatheorem (Baur-Strassen)

If we can evaluate f(x) in N operations, we can 
evaluate the gradient in less that cN operations.

You can differentiate any code!



Automatic differentiation frameworks

● They existed for a long time (Fortran, C++), but 
difficult to use and not so efficient.

● Special frameworks for ML: Tensorflow, 
Pytorch (“metalanguages”)

● You write a code a little bit differently, but you 
get free GPU dispatch and gradients for free



What you can do: optimizing preconditioners

● Solve discretized PDE 
using multigrid method

● Need to define 
projection/restriction 
operators

● P, R come from prior 
knowledge



What you can do: optimizing preconditioners

● Minimize approximation 
of spectral radius

● Stochastic gradient 
method 

● Autodiff

Deep Multigrid: learning prolongation and restriction matrices
A Katrutsa, T Daulbaev, I Oseledets - arXiv preprint arXiv:1711.03825, 2017 - 
arxiv.org

https://arxiv.org/abs/1711.03825
https://scholar.google.ru/citations?user=mKP8BpEAAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=5kMqBQEAAAAJ&hl=ru&oi=sra


Approximation of multivariate functions

● In the example, the we optimized the known 
algorithm

● This is called differentiable programming
● What if we do not know the algorithm?
● We need a class of parametrized models



Neural networks

● Deep neural networks are 
extremely efficient for 
image, text and audio 
processing

● Feed-forward: 
superposition of 
linear/pointwise-nonlinear 
functions



Convolutional neural networks

● Convolutional neural 
networks: Toeplitz 
matrices for W

● They are useful to work 
with piecewise-smooth 
objects (images)



Example: Topology optimization (Sosnovik, Oseledets)



Example: Topology optimization (Sosnovik, Oseledets)

● Idea: learn a mapping 
from current iterate 
and its gradient to the 
final solution

● Similar to image 
segmentation problem

Neural networks for topology optimization
I Sosnovik, I Oseledets - arXiv preprint arXiv:1709.09578, 2017 - arxiv.org

https://arxiv.org/abs/1709.09578
https://scholar.google.ru/citations?user=brUsNccAAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=5kMqBQEAAAAJ&hl=ru&oi=sra


Example: Topology optimization (Sosnovik, Oseledets)



Idea for new architectures

● We can reutilize popular formats (what we 
have seen in the literature) to create new 
learnable architectures

● Example: hierarchical matrices for mapping 
input to the output.



Resnet: popular architecture

● Instead of learning
● We learn  residual connection
● Motivated by multigrid!



Multiscale neural network

● We can reutilize popular formats (what we 
have seen in the literature) to create new 
learnable architectures

● Example: hierarchical matrices for mapping 
input to the output.

A multiscale neural network based on hierarchical 
matrices
Y Fan, L Lin, L Ying, L Zepeda-Núnez - arXiv preprint 
arXiv:1807.01883, 2018 - arxiv.org

https://arxiv.org/abs/1807.01883
https://arxiv.org/abs/1807.01883
https://scholar.google.ru/citations?user=jaIUPk4AAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=zE8c3-sAAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=OwA3zyMAAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=qbMVyzQAAAAJ&hl=ru&oi=sra


Multiscale neural network: idea



Multiscale neural network: idea



Wavenet

● Wavelets as neural 
network architecture



Tensor decompositions and neural networks

● Connections between tensor decompositions 
and special neural networks 

● We can prove results on deep networks using 
tensor analysis

Expressive power of recurrent neural networks
V Khrulkov, A Novikov, I Oseledets - ICLR 2018 
On the expressive power of deep learning: A tensor analysis
N Cohen, O Sharir, A Shashua - Conference on Learning Theory, 2016 - jmlr.org

https://arxiv.org/abs/1711.00811
https://scholar.google.ru/citations?user=GS5HTlkAAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=jMUkLqwAAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=5kMqBQEAAAAJ&hl=ru&oi=sra
http://www.jmlr.org/proceedings/papers/v49/cohen16.pdf
https://scholar.google.ru/citations?user=DmzoCRMAAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=2y5Am34AAAAJ&hl=ru&oi=sra
https://scholar.google.ru/citations?user=dwi5wvYAAAAJ&hl=ru&oi=sra


Tensor decompositions and neural networks



Unsupervised learning

● All the previous approaches deal with 
supervised learning, when the answer is known

● Unsupervised learning is becoming key 
technique for manifold learning and 
dimensionality reduction, and also uncertainty 
quantification



Learning probability distributions

● Given data points                        that are 
sampled from a probability distribution p, learn 
this probability distribution 

● Key problem in UQ, inverse problems, data 
assimilation

● Generative adversarial network (GAN) gaining 
popularity



Generative adversarial networks

● Proposed by Goodfellow et. al in 2014
● Idea is to approximate this distribution as a 

parametrized map from a known distribution
● An additional function (discriminator) is used to 

distinguish between fake and real data
● They learn an adversarial game



Reminder

● Game theoretic approach
● Generator learns to mimic the target 

distribution by generating samples 
● Discriminator learns to distinguish real and 

fake data



Deep Prior (Ulyanov, Lempitsky, Vedaldi)

● Overparametrization is not always the issue
● We assume that image is generate by a CNN
● We learn the parameters of CNN by minimizing 

the cost functional (i.e., for denoising) for 1 
image!



Problems

● Learning can be slow
● Sensitive to hyperparameters (may 

not converge in many cases)
● Smoothness, monotonicity, etc. are 

not guaranteed for neural-network 
based models

● Loss surfaces can be really 
complicated



Adversarial perturbations
● Adversarial perturbations easily fool 

many state of the art networks
● Adding a perturbation of a small norm 

can force misclassification

This work is supported by Ministry of Education and Science of the Russian Federation (grant 14.756.31.0001)



Universal adversarial perturbations 
● Mosaavi et al (2017) proposed universal 

perturbations: adding a single noise image allows 
one to fool the network in many (~70%) cases

● They were also shown to generalize across networks 
really well

Universal adversarial perturbations, Moosavi et al, CVPR 2017 



Our results (Khrulkov, Oseledets, CVPR 2018)
● Interpretable easy algorithm
● Relatively fast - only few minutes to 

construct a perturbation
● We attack low-level features


