Machine learning in numerical simulations

Ivan Oseledets

Skolkovo Institute of Science and Technology

Numerical simulation

- Take a model of a physical/chemical/biological system
- Construct discretization
- Solve resulting system of equations

Numerical simulation

- Model can be inaccurate or unavailable
- Discretization maybe unstable/difficult to construct
- Solver can be slow

Data-driven approaches

- Recover the model from experimental observations
- Approximate output quantities directly: surrogate models
- Optimize the given numerical simulator in a "black-box" way
- Approximate probability distributions instead of single solutions

Classical supervised machine learning

- Given input data, predict output data
- Setup a parametric class of models
- Solve a non-convex optimization problem

$$y_i \approx f(x_i, \theta)$$

Why ML is so easy to use

- Development of special frameworks (Tensorflow, Pytorch)
- Automatic differentiation: you never need to compute gradients (automatic is not symbolic!)
- Stochastic optimization



Deep Learning with PyTorch

Automatic differentiation: metatheorem (Baur-Strassen)

If we can evaluate f(x) in N operations, we can evaluate the gradient in less that cN operations.

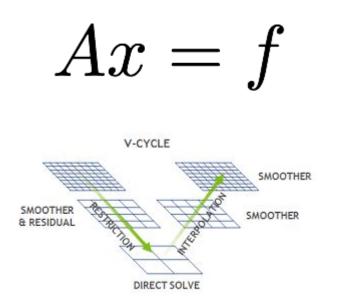
You can differentiate any code!

Automatic differentiation frameworks

- They existed for a long time (Fortran, C++), but difficult to use and not so efficient.
- Special frameworks for ML: Tensorflow, Pytorch ("metalanguages")
- You write a code a little bit differently, but you get free GPU dispatch and gradients for free

What you can do: optimizing preconditioners

- Solve discretized PDE using multigrid method
- Need to define projection/restriction operators
- P, R come from prior knowledge



What you can do: optimizing preconditioners

- Minimize approximation of spectral radius
- Stochastic gradient method
- Autodiff

Spectral radius p							
Grid size	Linear	AMG	DMG				
7	0.169132	0.194611	0.079188				
15	0.190049	0.208299	0.086569				
31	0.195635	0.218042	0.131717				
63	0.197055	0.259309	0.143555				
127	0.197412	0.396509	0.144278				
255	0.197501	0.377769	0.147190				

Spectral radius 0

Deep Multigrid: learning prolongation and restriction matrices <u>A Katrutsa</u>, T Daulbaev, <u>I **Oseledets**</u> - arXiv preprint arXiv:1711.03825, 2017 - arxiv.org

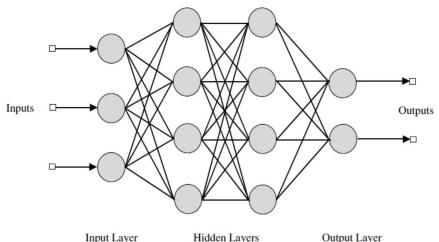
Approximation of multivariate functions

- In the example, the we optimized the known algorithm
- This is called differentiable programming
- What if we do not know the algorithm?
- We need a class of parametrized models

Neural networks

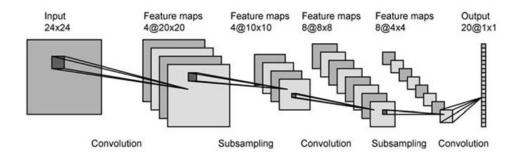
- Deep neural networks are extremely efficient for image, text and audio processing
- Feed-forward: superposition of linear/pointwise-nonlinear functions

$$y_{k+1} = f(W_k x_k + b), \quad y_{out} = y_N,$$



Convolutional neural networks

- Convolutional neural networks: Toeplitz matrices for W
- They are useful to work with piecewise-smooth objects (images)



Example: Topology optimization (Sosnovik, Oseledets)

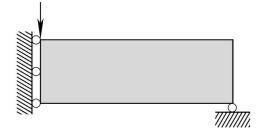
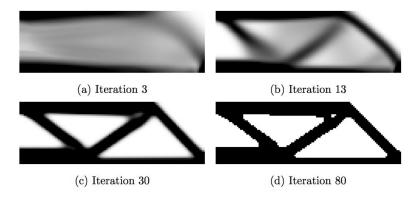


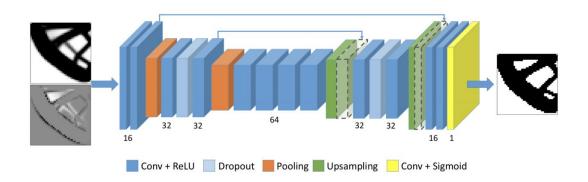
Figure 1: The design domain, boundary conditions, and external load for the optimization of a half MBB beam.



$$\begin{cases} \min_{\boldsymbol{x}} & c(\boldsymbol{u}(\boldsymbol{x}), \boldsymbol{x}) = \sum_{j=1}^{N} E_j(x_j) \boldsymbol{u}_j^T \boldsymbol{k}_0 \boldsymbol{u}_j \\ \text{s.t.} & V(\boldsymbol{x}) / V_0 = f_0 \\ & \boldsymbol{K} \boldsymbol{U} = \boldsymbol{F} \\ & x_j \in \{0; 1\}, \quad j = 1 \dots N \end{cases}$$

Example: Topology optimization (Sosnovik, Oseledets)

- Idea: learn a mapping from current iterate and its gradient to the final solution
- Similar to image segmentation problem



<u>Neural networks for topology optimization</u> <u>I Sosnovik</u>, <u>I Oseledets</u> - arXiv preprint arXiv:1709.09578, 2017 - arxiv.org

Example: Topology optimization (Sosnovik, Oseledets)

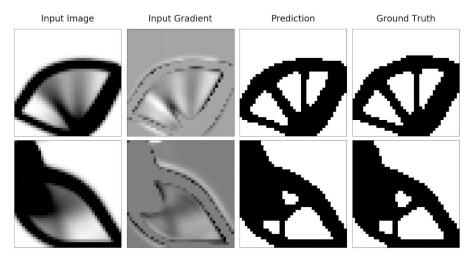


Figure 4: Top: SIMP is stopped after 8 iterations, binary accuracy 0.96, mean IoU 0.92; Bottom: solver is stopped after 5 iterations, binary accuracy 0.98, mean IoU 0.95.

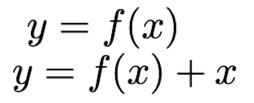
	Iteration								
Method	5	10	15	20	30	40	<u>50</u>	60	80
Thresholding	92.9	95.4	96.5	97.1	97.7	98.1	98.4	98.6	98.9
CNN $P(5)$	95.8	97.3	97.7	97.9	98.2	98.4	98.5	98.6	98.7
CNN $P(10)$	95.4	97.6	98.1	98.4	98.7	98.9	99.0	99.0	99.0
CNN $P(30)$	92.7	96.3	97.8	98.5	99.0	99.2	99.4	99.5	99.6
CNN $U[1, 100]$	94.7	96.8	97.7	98.2	98.7	99.0	99.3	99.4	99.6

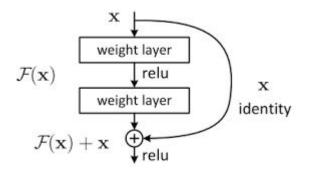
Idea for new architectures

- We can reutilize popular formats (what we have seen in the literature) to create new learnable architectures
- Example: hierarchical matrices for mapping input to the output.

Resnet: popular architecture

- Instead of learning
- We learn residual connection
- Motivated by multigrid!



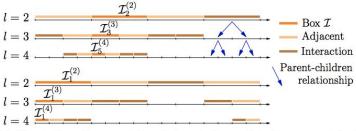


Multiscale neural network

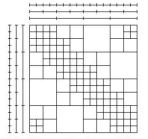
- We can reutilize popular formats (what we have seen in the literature) to create new learnable architectures
- Example: hierarchical matrices for mapping input to the output.

A multiscale neural network based on hierarchical matrices Y Fan, L Lin, L Ying, L Zepeda-Núnez - arXiv preprint arXiv:1807.01883, 2018 - arxiv.org

Multiscale neural network: idea



(a) Illustration of computational domain for an interior segment (up) and a boundary segment (down).



(b) Hierarchical partition of matrix A

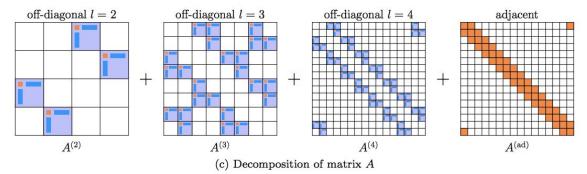


Figure 1: Hierarchical partition of computational domain, its corresponding partition of matrix A and the decomposition of matrix A.

Multiscale neural network: idea

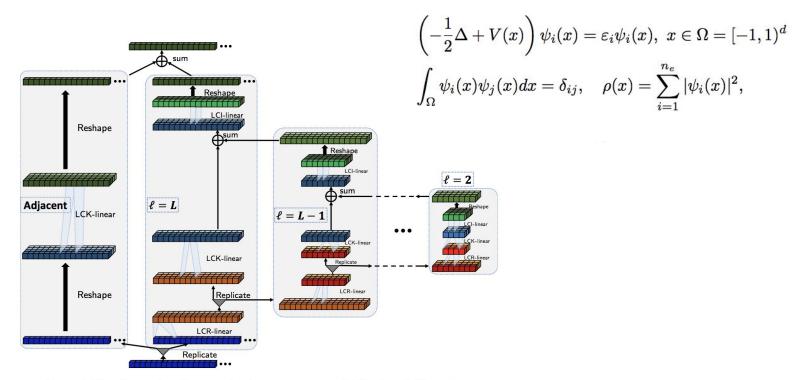
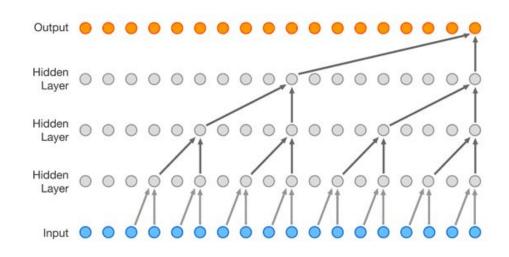


Figure 5: Neural network architecture for the matrix-vector multiplication of \mathcal{H}^2 -matrices.

Wavenet

• Wavelets as neural network architecture

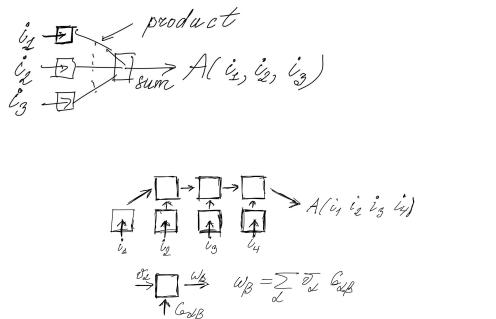


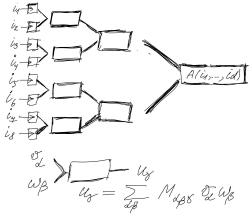
Tensor decompositions and neural networks

- Connections between tensor decompositions and special neural networks
- We can prove results on deep networks using tensor analysis

Expressive power of recurrent neural networks V Khrulkov, A Novikov, I Oseledets - ICLR 2018 On the expressive power of deep learning: A tensor analysis N Cohen, O Sharir, A Shashua - Conference on Learning Theory, 2016 - jmlr.org

Tensor decompositions and neural networks





Unsupervised learning

- All the previous approaches deal with supervised learning, when the answer is known
- Unsupervised learning is becoming key technique for manifold learning and dimensionality reduction, and also uncertainty quantification

Learning probability distributions

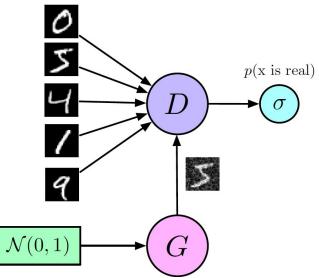
- Given data points x_1, \ldots, x_N that are sampled from a probability distribution p, learn this probability distribution
- Key problem in UQ, inverse problems, data assimilation
- Generative adversarial network (GAN) gaining popularity

Generative adversarial networks

- Proposed by Goodfellow et. al in 2014
- Idea is to approximate this distribution as a parametrized map from a known distribution
- An additional function (discriminator) is used to distinguish between fake and real data
- They learn an adversarial game

Reminder

- Game theoretic approach
- Generator learns to mimic the target distribution by generating samples
- **Discriminator** learns to distinguish real and fake data



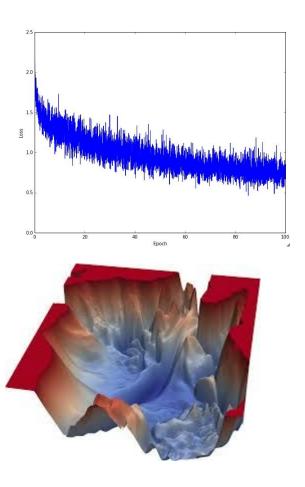
Deep Prior (Ulyanov, Lempitsky, Vedaldi)

- Overparametrization is not always the issue
- We assume that image is generate by a CNN
- We learn the parameters of CNN by minimizing the cost functional (i.e., for denoising) for 1 image!

$$\min_{\theta} E(f_{\theta}(z), x_0)$$

Problems

- Learning can be slow
- Sensitive to hyperparameters (may not converge in many cases)
- Smoothness, monotonicity, etc. are not guaranteed for neural-network based models
- Loss surfaces can be really complicated



Adversarial perturbations

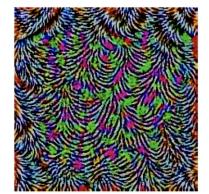
- Adversarial perturbations easily fool many state of the art networks
- Adding a perturbation of a small norm can force misclassification

$$\arg \max p(y|x;\theta) \neq \arg \max p(y|x+\varepsilon;\theta)$$

This work is supported by Ministry of Education and Science of the Russian Federation (grant 14.756.31.0001)

Universal adversarial perturbations

- Mosaavi et al (2017) proposed universal perturbations: adding a single noise image allows one to fool the network in many (~70%) cases
- They were also shown to generalize **across networks** really well



Our results (Khrulkov, Oseledets, CVPR 2018)

- Interpretable easy algorithm
- Relatively fast only few minutes to construct a perturbation
- We attack low-level features

	VGG-16	VGG-19	ResNet50
VGG-16	0.52	0.60	0.39
VGG-19	0.48	0.60	0.38
ResNet50	0.41	0.47	0.44

