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Introduction

Prerequisites

In work A. Bonfiglio e.t.c. was considered numerical modeling
blood flow in liver lobule.
In work M. Dufresne was considered structure of liver lobule. As
result we can conclude that lobule have double porosity structure

Figure: The pictures on the electron microscope

Liver size 30 cm and weight 1,5 kilogram.
Functions: Protective, hematopoietic, energy storage.
The liver is a natural filter of our body.
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Introduction

Lobule structure

a b

Figure: Lobule: a — 3D view, b — lobule geometry
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Mathematical model

Blood flow based on double porosity approach

Popular mathematical model for describing the flow in cavity porous
media has been proposed by Barenblatt, Zheltov, Kochina. This is the
classic method used for oil production.

vα = −kα
µ
∇pα,

∂cαρ

∂t
+ div ρvα = qα,

qα = qα(pα, ρ, µ), mα = m(pα), α = 1, 2,

here vα — velocity vector, kα — permeability components, cα —
porosity coefficients.
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Mathematical model

Mathematical model adaptation

We consider blood as a weakly compressible Newtonian fluid
(ρ ≈ const ).

c1
∂p1

∂t
− div (K1∇p1) + r (p1 − p2) = f1,

c2
∂p2

∂t
− div (K2∇p2)− r (p1 − p2) = f2,

here vα(x), pα(x) velocities and pressure , r(p1 − p2) express
exchange between two continua.
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Mathematical model

Lobule scheme

Figure: Lobule scheme

pα = ppα, x ∈ Γp,

pα = pvα, x ∈ Γv,

∇pα · n = 0, x ∈ Γb.
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Mathematical model

Dimensionless problem

p∗α =
pα − pvα
ppα − pvα

, x∗ =
x

L
,

p∗α = 1, x ∈ Γp,

p∗α = 0, x ∈ Γv,

∇p∗α · n = 0, x ∈ Γb,

p∗α = 0, t = 0.
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Numerical algorithm

Computational basis

Numerical realization of problem based on the FEM (4 mesh)
Lagrangian finite elements of the first degree

V = v ∈ H1(Ω) : v(x) = c, x ∈ ΓD,

c1(
∂p1

∂t
, v1) + a1(p1, v1) + r(p1 − p2, v1) = (f1, v1), ∀ v1 ∈ V,

c2(
∂p2

∂t
, v1) + a2(p2, v2)− r(p1 − p2, v2) = (f2, v2), ∀ v2 ∈ V,

cα(p, v) = cα

∫
Ω
p vdx, aα(p, v) =

∫
Ω

(K∇p, ∇v) dx,
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Numerical algorithm

Estimate and time scheme

‖p1‖2c1 + ‖p2‖2c2 ≤ ‖p
0
1‖2c1 + ‖p0

2‖2c2 +
1

2

T∫
0

‖f1(t)‖2a1 + ‖f2(t)‖2a2 dt,

Finite dimensional Vh:

‖p1,h‖2C1
+‖p2,h‖2C2

≤ ‖p0
1,h‖2C1

+‖p0
2,h‖2C2

+
1

2

T∫
0

‖f1,h(t)‖2A1
+‖f2,h(t)‖2A2

dt,

Fully implicit scheme;
Splitting through previous layer values in exchange.
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Numerical algorithm

Triangulated mesh

The results of numerical calculations are performed on a sequence of
refined grids.

Figure: Mesh: 6117 vertices, 11874 elements
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Results

Numerical results

Figure: Velocity field
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Results

Pressure distribution

a b

Figure: Results in: a — sinusoids, b — pores
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Results

Methodical calculations

a b

Figure: Error norm L2: a — capillars, b — pores
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Results

Anisotropy tensor of flow

Let’s consider general case with anisotropy of sinusoids in lobule.
Introduce anisotropy tensor in polar c.s.

K1 =

(
Kr 0
0 Kϕ

)
Same tensor in Cartesian coordinates

K1 =
1

x2 + y2

(
Krx

2 +Kϕy
2 xy(Kr −Kϕ)

xy(Kr −Kϕ) Kry
2 +Kϕx

2

)
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Results

System with anisotropy

c1
∂p1

∂t
− divK1 grad p1 + r (p1 − p2) = 0,

c2
∂p2

∂t
− ddiv grad p2 − r (p1 − p2) = 0.

with next physical parameters
c1 = 0.2, c2 = 0.8, d = 0.01, r = 0.1, Kr = 2, Kϕ = 0.5
and numerical parameters
T = 2, τ = 0.01, mesh consist of 17702 elements.
Also consider similar Initial and BCs.
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Results

Anisotropic - Isotropic

Figure: Pressure in sinusoids at t = 2: Left - Anisotropic, Right - Isotropic
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Results

Basic assumptions

Liver contains ≈ 10000 lobules (DL = 30 cm, Dl = 2 mm)
Lobule contains hundreds of sinusoids
Size of lobule small enough compared to size of liver (part)
Side of hex much smaller than height of cylinder
Capacity of lobule small enough
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Results

Lobule structure

a b

Figure: Two level: a — picture, b — scheme
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Results

Liver level problems

Model can be reduced from original applying r = 0.

cu1
∂pu1
∂t
− div (Ku

1∇pu1) = 0,

cu2
∂pu2
∂t
− div (Ku

2∇pu2) = 0,

Add boundary pu1 = 1 at x = 0, 0.8 ≤ y ≤ 1,
pu1 = 0.5 at x = 1, 0 ≤ y ≤ 0.2,
pu2 = 0 at y = 1, 0.8 ≤ x ≤ 1,
pu2 = 0.5 at y = 0, 0 ≤ x ≤ 0.2,
and initial conditions
pu1(0) = 0, pu2(0) = 0.
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Results

Behavior of Level 1

Figure: Boundary conditions source
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Results

Solution of two-level approach with anisotropy t = 0.5

Figure: Pressure left in sinusoids, right in sinusoidal space
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Results

Solution of two-level approach with anisotropy t = 1

Figure: Pressure left in sinusoids, right in sinusoidal space
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Results

Solution of two-level approach with anisotropy t = 1.5

Figure: Pressure left in sinusoids, right in sinusoidal space
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Results

Solution of two-level approach with anisotropy t = 2

Figure: Pressure left in sinusoids, right in sinusoidal space
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Results

Comparison with Bonfiglio article results

1 realization: FEniCS / Comsol;
2 blood as: weakly compressible / incompressible;
3 double porosity (sinusoids) / without double porosity (averaged);
4 proposed two-level approach.

Figure: Bonfiglio results
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Results

Consequences

Scalable for HPC (2 · number of lobules)
Produce problem with variable BC from problem with const BCs
Cooperation with Lobule engineers from Taiwan (Regmed)
Introduce Lobule-field for main characteristics
For each point of domain correspond Lobule

Lobule →



b1
b2
b3
b4
b5
b6
b7


,



b1
b2
b3
b4
b5
b6
b7
∗


Full geometry of Liver / Lack of Data
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Results

Deformable lobule model

divσ = 0

σ =
Eν

(1 + ν)(1− 2ν)
(gradu)I +

E

1 + ν
ε− peffI

ε =
1

2
((gradu) + (gradu)T )

Supplemented with following boundary conditions:

σnn = −peff, x ∈ Γp

u = 0, x ∈ Γv
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Results

Displacement solution

Figure: Deformation left for anisotropic case, right in isotropic case
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