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Motivation

Radioactive decay can cause the self-heating of waste

The heating influences fluid’s behavior and radionuclides 
geomigration process

Coupled ground-water flow, solute and heat transport model is 
needed
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Model of coupled ground-water flow, 
solute and heat transport processes
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– ground-water flow equation

– heat transport equation

– Darcy’s law

– fluid density

– tensor of hydraulic conductivity
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– solute transport equation



Heat transport process. Volumetric 
heat source. Variable viscosity.
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Variable viscosity
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- heat emission per 1 decay event

- the proportion of neutrino energy
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Heat-transport equation

▪ Thermal equilibrium

▪ Convection

▪ Conduction – thermal dispersion

▪ Wells

▪ Radiogenic heat

- decay constant( )k

- sorptivity coefficient
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Numerical scheme: splitting method
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Groundwater flow problem 
solving with known density:

and viscosity:

Result:
Convergence 

control

Convergence 
control is failed:

k=k+1

Convergence 
control is passed:

n=n+1

( )1,k 1, 1,,n n k n kCT + + +=

1, 1n kh + +

Computation of flow:
Result: 1, 1n ku + +

Solute transport problem solving
Result: 1, 1n kC + +

Heat transport problem solving
Result: 1, 1n kT + +
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k – iteration index
n – time step index



Model verification

• Horton-Rogers-Lapwood (HRL) Convection

• Two-Dimensional Oil Convection in Aluminum 
Foam 

• Natural Convection of Heat Generating Fluid
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HRL Convection
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• Top: 𝑇 = 0℃

• Bottom: 𝑇 = 1℃

• Others:
𝜕𝑇

𝜕𝑥
= 0

• Flow BC: impermeability condition

• IC: ℎ = 0 𝑚, linear temperature field

24cRa Ra  = - transition to convective mode condition (according to 
analytical estimation)

The problem was solved with different Rayleigh’s numbers. Nu – Ra 
relationship was built.

Nusselt number

-sizes of area

- temperature expansion 
coefficient

- hydraulic conductivity

- Heat flow through the wall

- fluid heat capacity

- heat conductivity
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HRL Convection
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• Nu – Ra relationship 
• Crossverification with SUTRA code (*)
• Transition to convective mode: Ra=43.7

(*) Weatherhill, D., Simmons, C.T., Voss, C.E., and Robinson, N.I. Testing density-dependent ground-water
models: twodimensional steady state unstable convection in infinite, finite and inclined porous layers // 
Advances in Water Resources. – 2004. – Vol. 27. – pp. 547-562.
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Two-Dimensional Oil Convection in 
Aluminum Foam 
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• Left: 𝑇ℎ𝑜𝑡 = 36℃

• Right: 𝑇𝑐𝑜𝑙𝑑 = 6℃

• Others:
𝜕𝑇

𝜕𝑥
= 0

• Flow BC: impermeability condition 

• IC: ℎ = 0 𝑚, linear temperature field

For constant viscosity case the flow patterns are radially symmetric. For 
variable viscosity case the flow patterns are asymmetric: streamlines crowd 
together near the hot wall.

The problem was solved with different 
Rayleigh’s numbers in two modes: constant 
viscosity case and variable viscosity case



Two-Dimensional Oil Convection in 
Aluminum Foam 
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GeRa’s and SEAWAT’s v4 (*) results with different Rayleigh’s numbers: streamlines

(*) Langevin, C.D., Thorne, D.T., Jr., Dausman, A.M., Sukop, M.C., and Guo, Weixing, 2007, SEAWAT Version 4: A 
Computer Program for Simulation of Multi-Species Solute and Heat Transport: U.S. Geological Survey Techniques
and Methods Book 6, Chapter A22, 39 p



Natural Convection of Heat Generating 
Fluid
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Buretta and Berman’s convection cell(*):

Nu – Ra experimental(*) relationship: two 
branches

31.8exp

cRa =
(*) Buretta, R. J., Berman, A. S. Convective heat transfer in a liquid saturated porous layer // ASME J. Appl. 
Mech. – 1976. – Vol. 43. – pp. 249–253.



Natural Convection of Heat Generating 
Fluid
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Nu – Ra relationship from numerical 
experiment and approximation

Exp.: ln 0.553ln 0.871Nu Ra= −

Temperature fields: numerical results for Ra = 
25 (top) и Ra = 35 (bottom)

30.6num

cRa =

GeRa: ln 0.5799ln 1.984Nu Ra= −



“Severny” polygon
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• Lack of radionuclide 
composition  data

• Short-term study: 50 years 

• Maximum temperature: 200 °C

• Slight influence on 
geomigration



Conclusion

• Coupled ground-water flow, solute and heat 
transport model was implemented into the 
GeRa code

• It was verified on different tests

• “Severny” polygon is under investigations now
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Thank you!
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