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Introduction

Complex processes in heterogeneous
domains occur in many real-world
applications.

A classical numerical method for
simulation of the applied problems in
highly heterogeneous media should use a
computational grid that resolve all small
heterogeneities. For such problems, a
numerical homogenization or multiscale
methods are used.

Multiscale methods should combine the
simplicity and efficiency of a coarse-scale
models, and the accuracy of microscale
approximations.
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Problem formulation
Scattering problem in heterogeneous media

We consider scattering problem of a time-harmonic incident field ui

∇(A(x)∇u)− k2n(x)u = 0, x ∈ Dj ,

∆us + k2us = 0, x ∈ Ω0,

ui + us = u, x ∈ ∂Dj

∇(ui + us) · n = A(x)∇u · n, x ∈ ∂Dj

where u = ui + us is the total field, us is the scattered field and
Ω = Ω0 ∪

∑
j=1,2,...Dj .

We consider equation with Sommerfield radiation condition

∂us
∂n
− ikus = 0, x ∈ ∂Ω0

where n is the unit normal on boundary.
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Problem formulation
Scattering problem in heterogeneous media

The equation above can be written as comlex-valued Helmholtz problem in
domain

∇(A(x)∇us)− k2n(x)us = f(x), x ∈ Ω

with heterogeneous properties

n(x) =

{
1 x ∈ Ω0

αj x ∈ Dj , j = 1, 2, ..

A(x) =

{
I x ∈ Ω0

Aj x ∈ Dj , j = 1, 2, ..

and non-zero right hand side in subdomains Dj

f(x) = ∇((I −A(x))∇ui) + k2(1− n(x))ui

where ui = eikx·d = cos(kx · d) + i sin(kx · d) is the given incident field and d is
the incident wave direction.
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Fine grid approximation
Scattering problem in heterogeneous media

For approximation of the Helmholtz equation we use finite element
method. We have following variational formulation: find
u ∈ Vh = H1(Ω) such that

a(us, v)− k2m(us, v) + ib(us, v) = l(v), v ∈ Vh,

where

a(u, v) =

∫
Ω

(A∇u,∇v)dx, m(u, v) =

∫
Ω
nuvdx,

b(u, v) =

∫
∂Ω
kuvds, l(v) =

∫
Ω
fvdx,

and us = Re(us) + iIm(us), us =
∑

j Ujφj , φj – linear basis
functions for fine scale approximation.
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Problem formulation
Helmholtz problem in fractured media

Computational
domain Ω.

We consider the Helmholtz equation for the
elastic waves propagation in the frequency domain

−div σ(u)− ω2ρu = f, x ∈ Ω

where ω is frequency, ρ is density and f is the
source function.
Equation is supplemented by the relation between
the stress tensor σ and strain tensor ε

σ(u) = 2µε(u)+λ div uE, ε(u) =
1

2
(∇u+(∇u)T )

where E is unit tensor, λ and µ are Lame
parameters.
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Linear-slip model (LSM) 1

Following the linear-slip model, we have a linear relation between
traction vector and the magnitude of the discontinuity in the
displacement field as follows

[u] = Zσ · n,

where [u] is the jump of the displacement field at the fracture, σ · n is
the traction vector at the surface of the fracture and Z is the fracture
compliance matrix.

Z =

[
z1 0
0 z2

]
where z1 = k−1

1 and z2 = k−1
2 are the normal and tangential

compliances, respectively.

1Schoenberg, M. (1980). Elastic wave behavior across linear slip interfaces. The
Journal of the Acoustical Society of America, 68(5), 1516-1521.
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Absorbing boundary condition

In the computations, the energy of waves needs to be absorbed at
artificial boundaries in order to avoid spurious reflections caused by the
finite computational domain. We use a first order absorbing boundary
condition

iρωAu = −σ(u)n, x ∈ ∂Ω,

where

A =

[
n1 n2

−n2 n1

] [
cp 0
0 cs

] [
n1 −n2

n2 n1

]
.

Here n = (n1, n2) is the outward normal to the boundary and cs, cp are
the S- and P-wave velocities

cp =

√
λ+ 2µ

ρ
, cs =

√
µ

ρ
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Fine grid approximation
Helmholtz problem in fractured media

The weak formulation of the elastic wave equation for the interior penalty
discontinuous Galerkin method (IPDG, Interior Penalty Discontinuous Galerkin) in
fractured media is given by

a(u, v)− ω2m(u, v) + ib(u, v) = l(v), v ∈ Vh,

aDG(u, v) =
∑

K∈Th

∫
K

(σ(u), ε(v))dx+
∑
E∈Ef

∫
E

Z−1 [u] [v] ds −

−
∑
E∈Ec

∫
E

{τ(u)} [v] ds−
∑
E∈Ec

∫
E

{τ(v)} [u] ds+ i
∑
E∈Ec

η

h

∫
E

(λ+ 2µ) [u] [v] ds,

m(u, v) =
∑

K∈Th

∫
K

ρuvdx, b(u, v) =
∑
E∈Eb

∫
E

ρωAuvds,

l(v) =
∑

K∈Th

∫
K

fvdx.

where η is the penalty parameter, τ(u) = σ(u)n is the traction vector, Eb is a subset

of faces on the boundary. Here u = Re(u) + iIm(u), and u =
∑

j ujφj , φj are linear

basis functions for the fine scale approximation.
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Fine grid approximation for general problem

For approximation of the Helmholtz equation we use finite element
method. We have following variational formulation: find
u ∈ Vh = H1(Ω) such that

a(u, v)− k2m(u, v) + ib(u, v) = l(v), v ∈ Vh,

and u = Re(u) + iIm(u).
We can write the complex valued problem in matrix form

(Kh +Bh − ω2Mh)U = Fh,

where U = Re(U) + iIm(U), (Fh)i = l(φi), and complex valued
matrices Mh, Bh and Kh are given by

(Mh)ij = m(φi, φj), (Bh)ij = ib(φi, φj), (Kh)ij = a(φi, φj).
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Coarse grid approximation using GMsFEM

For coarse-scale approximation, we use Generalized Multiscale Finite
Element Method. In the GMsFEM, we have following computational
algorithm:

the construction of the multiscale basis functions by the solution
of the local eigenvalue problem in local domain ωi and

the construction and solution of the coarse grid approximation on
multiscale space.
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Coarse grid approximation using GMsFEM

The global multiscale space VH is then defined as the linear span of all V ωi

H ,
ωi ∈ TH and will be used as the approximation space of CG approach, which
can be formulated as follows: find uH ∈ VH :

a(uH , v)− k2m(uH , v) + ib(uH , v) = l(v), v ∈ VH
For the construction of the boundary space, we solve following local spectral
problem in ωi which obtained by the combining all the coarse cells around one
vertex of the coarse grid.

a(φωi , v) = λs(φωi , v), v ∈ Vh(ωi),

where

s(φωi , v) =

∫
∂ωi

ρφωivds

To construct a multiscale space V ωi

H , we select the first M eigenvectors
φωi
1 , φ

ωi
2 , ..., φ

ωi

M corresponding to the first M smallest eigenvalues
λ1 ≤ λ2 ≤ ... ≤ λM ,and define the space V ωi,H by

V ωi

H = span {φωi
1 , φ

ωi
2 , ..., φ

ωi

M} .

Gavrilieva U.S. GMsFEM for Helmholtz problem August 17 13 / 23



Coarse grid approximation using GMsFEM

Matrix form. The coarse-scale system can be calculated by projecting
the fine-scale matrices onto the coarse grid with the global projection
matrix assembled from the calculated multiscale basis functions

R = (R1, R2, ..., RN )T , Rj =
[
φωi

1 , φ
ωi
2 , ..., φ

ωi
M

]
.

where Rj is the local projection matrix in a coarse element ωj and N is
the number of coarse grid elements.

(KH +BH − ω2MH)VH = FH ,

where VH = Re(VH) + iIm(VH), MH and KH are the coarse-scale mass
and stiffness matrices and BH is the coarse-scale boundary mass matrix

MH = RMhR
T , KH = RKhR

T , BH = RBhR
T , FH = RFh.

After calculation of the coarse-scale solution, we can recover the
fine-scale solution

Vms = RTVH .
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Numerical results
Scattering problem in heterogeneous media

Computational domains with heterogeneous obstacles are presented and have
dimensions Ω = [−2, 2]× [−2, 2]. We set k = 1.0 and d = (1, 0). For background, we
set α = 1 and n = 1. We have three types of circle inclusion:

α = 3, n = 0.8 (first),

α = 5, n = 0.4 (second),

α = 10, n = 0.2 (third)

Left figure is domain with obstacles, right figure is fine mesh with 100802 vertices
and 200482 triangle elements. Coarse mesh with 121 vertices and 100 triangle

elements.
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Numerical results
Scattering problem in heterogeneous media

Fine-scale (top) and coarse-scale (bottom) solution Re(u), Im(u),
Abs(u) for heterogeneous domain with k = 1.0.

Gavrilieva U.S. GMsFEM for Helmholtz problem August 17 16 / 23



Numerical results
Scattering problem in heterogeneous media

Coarse mesh with 121 local domains (10× 10).

M DOFc ||euRe
s
||L2 (%) ||euIm

s
||L2 (%) ||euAbs

s
||L2 (%) time (sec)

1 121 10.9953 10.9844 3.14929 < 1
2 242 9.90949 9.9389 2.85627 < 1
4 484 7.89172 7.70215 2.28181 < 1
6 726 6.08051 6.0714 1.70784 1
8 968 5.49806 5.54987 1.5524 1
12 1452 4.45985 4.29164 1.26164 2
16 1936 2.38866 2.36736 0.663197 5

Relative errors for different number of multiscale basis. Computational
time for fine scale is 28 seconds.
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Numerical results
Helmholtz problem in fractured media

Computational domains with different lentgh of fracture are presented and
have dimensions Ω = [0, Lx]× [0, Ly] with Lx = Ly = 500[m].

On the left of Figures, we have a fracture length of 10[m] (Case 1), and

on the right of Figures, we have a fracture length of 20[m] (Case 2).

Computational meshes with different length (10[m], 20[m]) of fracture. Left figure is

Case 1 (16077 vertices and 31752 triangle elements), right figure for Case 2 (16509

vertices and 32616 triangle elements).
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Numerical results
Helmholtz problem in fractured media

We set the source term

f(x) = G(x)P (θ),

where P (θ) = (cosθ, sinθ) is the polar angle of the source force vector
with θ = 0, G(x) = δ(x− x0) with x0 = (250, 250) and run simulations
for ω = 2πf0 with f0 = 15 Hz.
For numerical simulation, we set following parameters

K =
E

3(1− 2ν)
, µ =

E

2(1 + ν)
,

with E = 40 · 109[Pa], ν = 0.3, ρ = 2300[kg/m3]. For fracture
compliance matrix Z, we use z1 = z2 = 107[m/Pa].
For the numerical solution, we construct structured coarse grids with
400 cells. The fine grids are unstructured grids that resolve the
fractures.
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Numerical results
Helmholtz problem in fractured media

Fine-scale (top) and coarse-scale (bottom) solution for Magnitude, X, Y (from

left to right) for domain with fracture (Case 1).
Gavrilieva U.S. GMsFEM for Helmholtz problem August 17 20 / 23



Numerical results
Helmholtz problem in fractured media

Fine-scale (top) and coarse-scale (bottom) solution for Magnitude, X, Y (from

left to right) for domain with fracture (Case 2).
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Numerical results
Helmholtz problem in fractured media

M DOFc f0 = 5 (Hz) f0 = 10 (Hz) f0 = 15 (Hz) time(sec)

4 484 26.1354 35.2117 70.3659 < 1
6 726 22.7009 29.2749 53.8333 < 1
8 968 14.6834 18.319 30.5928 1
10 1210 11.2943 14.2606 23.8355 3
12 1452 8.77733 10.9336 17.595 6
16 1936 4.45949 7.62178 10.6931 13
20 2420 4.1722 5.67664 9.17952 21

Relative errors L2 norm (%) for displacement for different number of
multiscale basis. ω = 2πf0. DOFf = 195696. Computational time for
fine scale is about 270 seconds.
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Conclusion

We considered a Helmholtz equation in fractured medium using
linear-slip model (LSM) and scattering problem in heterogeneous
medium.

We constructed the reduced order model using Generalized
Multiscale Finite Element Method.

We present numerical results for geometries with fractures and
obstacles.

Our results show that the presented method give good
approximation of the solution and reduce size of system.

In future we will consider another types of multiscale basis
construction and 3D problems.

Thank you for your attention!
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