Hybrid FV-FE methods for modeling flows in fractured porous media

A. Chernyshenko, M. Olshanskii

Marchuk Institute of Numerical Mathematics Russian Academy of Sciences

Multiscale methods and Large-scale Scientific Computing, Moscow, August 17

This work develops a hybrid FV–FE method for solving a system of advection–diffusion equations in a bulk domain coupled to advection–diffusion equations on an embedded surface.

Systems of coupled bulk-surface PDEs arise in many engineering and natural science applications:

- the transport and diffusion of solute in fractured porous media
- multiphase fluid dynamics with soluble or insoluble surfactants
- dynamics of biomembranes
- crystal growth
- signaling in biological networks
- etc.

- 4 目 ト - 4 日 ト - 4 日 ト

This work develops a hybrid FV–FE method for solving a system of advection–diffusion equations in a bulk domain coupled to advection–diffusion equations on an embedded surface.

Systems of coupled bulk-surface PDEs arise in many engineering and natural science applications:

- the transport and diffusion of solute in fractured porous media
- multiphase fluid dynamics with soluble or insoluble surfactants
- dynamics of biomembranes
- crystal growth
- signaling in biological networks
- etc.

- 4 目 ト - 4 日 ト - 4 日 ト

- $\bullet\,$ Fitted FEM: tetrahedral mesh fits the surface + FEM
 - advection-diffusion (Elliott, Ranner, 2013)
 - non-linear reaction-diffusion (Madzvamuse, Chung, 2015,2016)
 - two-phase flow with surfactants (Barrett, Garcke, Nurnberg, 2015)
 - Darcy and transport-diffusion (Alboin, Jaffre, Roberts, Serres, 2002)

• Unfitted FEM: surface cuts through the background tetrahedral mesh

- cutFEM, Nitsche-XFEM, trace FEM (Burman et al, 2015; Olshanskii, Reusken, Xu, 2014)
- advection-diffusion (Gross, Olshanskii, Reusken, 2014)
- two-phase Stokes flow with soluble surfactants (Hansbo, Larson, Zahedi, 2015)
- time-dependent domains (Hansbo, Larson, Zahedi, 2016)
- FV/FD in bulk domain + FEM (triangulation/extend the PDE off the surface to a narrow band)
- Mixed FEM + Mortar methods (Nordbotten, Boon, Fumagalli, 2017)

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

- $\bullet\,$ Fitted FEM: tetrahedral mesh fits the surface + FEM
 - advection-diffusion (Elliott, Ranner, 2013)
 - non-linear reaction-diffusion (Madzvamuse, Chung, 2015,2016)
 - two-phase flow with surfactants (Barrett, Garcke, Nurnberg, 2015)
 - Darcy and transport-diffusion (Alboin, Jaffre, Roberts, Serres, 2002)
- Unfitted FEM: surface cuts through the background tetrahedral mesh
 - cutFEM, Nitsche-XFEM, trace FEM (Burman et al, 2015; Olshanskii, Reusken, Xu, 2014)
 - advection-diffusion (Gross, Olshanskii, Reusken, 2014)
 - two-phase Stokes flow with soluble surfactants (Hansbo, Larson, Zahedi, 2015)
 - time-dependent domains (Hansbo, Larson, Zahedi, 2016)
- FV/FD in bulk domain + FEM (triangulation/extend the PDE off the surface to a narrow band)
- Mixed FEM + Mortar methods (Nordbotten, Boon, Fumagalli, 2017)

イロン イヨン イヨン イヨン

- $\bullet\,$ Fitted FEM: tetrahedral mesh fits the surface + FEM
 - advection-diffusion (Elliott, Ranner, 2013)
 - non-linear reaction-diffusion (Madzvamuse, Chung, 2015,2016)
 - two-phase flow with surfactants (Barrett, Garcke, Nurnberg, 2015)
 - Darcy and transport-diffusion (Alboin, Jaffre, Roberts, Serres, 2002)
- Unfitted FEM: surface cuts through the background tetrahedral mesh
 - cutFEM, Nitsche-XFEM, trace FEM (Burman et al, 2015; Olshanskii, Reusken, Xu, 2014)
 - advection-diffusion (Gross, Olshanskii, Reusken, 2014)
 - two-phase Stokes flow with soluble surfactants (Hansbo, Larson, Zahedi, 2015)
 - time-dependent domains (Hansbo, Larson, Zahedi, 2016)
- FV/FD in bulk domain + FEM (triangulation/extend the PDE off the surface to a narrow band)

• Mixed FEM + Mortar methods (Nordbotten, Boon, Fumagalli, 2017)

<ロ> (日) (日) (日) (日) (日)

- $\bullet\,$ Fitted FEM: tetrahedral mesh fits the surface + FEM
 - advection-diffusion (Elliott, Ranner, 2013)
 - non-linear reaction-diffusion (Madzvamuse, Chung, 2015,2016)
 - two-phase flow with surfactants (Barrett, Garcke, Nurnberg, 2015)
 - Darcy and transport-diffusion (Alboin, Jaffre, Roberts, Serres, 2002)
- Unfitted FEM: surface cuts through the background tetrahedral mesh
 - cutFEM, Nitsche-XFEM, trace FEM (Burman et al, 2015; Olshanskii, Reusken, Xu, 2014)
 - advection-diffusion (Gross, Olshanskii, Reusken, 2014)
 - two-phase Stokes flow with soluble surfactants (Hansbo, Larson, Zahedi, 2015)
 - time-dependent domains (Hansbo, Larson, Zahedi, 2016)
- FV/FD in bulk domain + FEM (triangulation/extend the PDE off the surface to a narrow band)
- Mixed FEM + Mortar methods (Nordbotten, Boon, Fumagalli, 2017)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Goals:

- to allow the surface to overlap with the background mesh in an arbitrary way
- 2 avoid building regular surface triangulation
- **③** do not use any extension of the surface PDE to the bulk domain

Approaches:

- octree meshes with cut-cells
- MPFA nonlinear FV method for polyhedral meshes (Lipnikov, Svyatskiy, Vassilevski, 2012; Chernyshenko, Vassilevski, 2014)
- trace FEM on octree meshes (Chernyshenko, Olshanskii, 2015)

Also receive:

- surface parametrization is not required
- only degrees of freedom from the cells cut by the surface are active

Goals:

- to allow the surface to overlap with the background mesh in an arbitrary way
- 2 avoid building regular surface triangulation
- **③** do not use any extension of the surface PDE to the bulk domain

Approaches:

- octree meshes with cut-cells
- MPFA nonlinear FV method for polyhedral meshes (Lipnikov, Svyatskiy, Vassilevski, 2012; Chernyshenko, Vassilevski, 2014)
- trace FEM on octree meshes (Chernyshenko, Olshanskii, 2015)

Also receive:

- surface parametrization is not required
- only degrees of freedom from the cells cut by the surface are active

(日) (周) (三) (三)

Goals:

- to allow the surface to overlap with the background mesh in an arbitrary way
- 2 avoid building regular surface triangulation
- **③** do not use any extension of the surface PDE to the bulk domain

Approaches:

- octree meshes with cut-cells
- MPFA nonlinear FV method for polyhedral meshes (Lipnikov, Svyatskiy, Vassilevski, 2012; Chernyshenko, Vassilevski, 2014)
- trace FEM on octree meshes (Chernyshenko, Olshanskii, 2015)

Also receive:

- surface parametrization is not required
- only degrees of freedom from the cells cut by the surface are active

Assume the given bulk domain $\Omega \in \mathbb{R}^3$ and a piecewise smooth surface $\Gamma \subset \Omega$, assume $\partial \Gamma \subset \partial \Omega$. u_i - volume concentration Ω_i , v - surface concentration along Γ .

C. Alboin, J. Jaffre, et.al, Modeling fractures as interfaces for flow and transport in porous media, 2001

Assume the given bulk domain $\Omega \in \mathbb{R}^3$ and a piecewise smooth surface $\Gamma \subset \Omega$, assume $\partial \Gamma \subset \partial \Omega$. u_i - volume concentration Ω_i , v - surface concentration along Γ .

Equations in subdomains:

$$\phi_{i} \frac{\partial u_{i}}{\partial t} + \operatorname{div}(\mathbf{w}_{i} u_{i}) - D_{i} \Delta u_{i} = f_{i} \text{ in } \Omega_{i},$$

$$u_{i} = v \text{ on } \partial \Omega_{i} \cap \Gamma$$
(1)

On the surface Γ :

$$\phi_{\Gamma} \frac{\partial v}{\partial t} + \operatorname{div}_{\Gamma} (\mathbf{w}_{\Gamma} v) - dD_{\Gamma} \Delta_{\Gamma} v = F_{\Gamma}(u) + f_{\Gamma} \quad \text{on } \Gamma, \qquad (2)$$

where $\nabla_{\Gamma} g = \nabla g - \nabla g \cdot \mathbf{n}_{\Gamma} \mathbf{n}_{\Gamma}$, $f_{\Gamma} \in L^{2}(\Gamma)$, $\mathbf{w}_{\Gamma} \in H^{1,\infty}(\Gamma)$, $\phi_{i} > 0, \phi_{\Gamma} > 0$ - porosity, d - fracture width Assume the given bulk domain $\Omega \in \mathbb{R}^3$ and a piecewise smooth surface $\Gamma \subset \Omega$, assume $\partial \Gamma \subset \partial \Omega$. u_i - volume concentration Ω_i , v - surface concentration along Γ .

Equations in subdomains:

$$\phi_{i} \frac{\partial u_{i}}{\partial t} + \operatorname{div}(\mathbf{w}_{i} u_{i}) - D_{i} \Delta u_{i} = f_{i} \text{ in } \Omega_{i},$$

$$u_{i} = \mathbf{v} \text{ on } \partial \Omega_{i} \cap \Gamma$$
(1)

On the surface Γ :

$$\phi_{\Gamma} \frac{\partial v}{\partial t} + \operatorname{div}_{\Gamma}(\mathbf{w}_{\Gamma} v) - dD_{\Gamma} \Delta_{\Gamma} v = F_{\Gamma}(u) + f_{\Gamma} \quad \text{on } \Gamma, \qquad (2)$$

where $\nabla_{\Gamma} g = \nabla g - \nabla g \cdot \mathbf{n}_{\Gamma} \mathbf{n}_{\Gamma}$, $f_{\Gamma} \in L^{2}(\Gamma)$, $\mathbf{w}_{\Gamma} \in H^{1,\infty}(\Gamma)$, $\phi_{i} > 0, \phi_{\Gamma} > 0$ - porosity, d - fracture width

The total surface flux $F_{\Gamma}(u)$ represents the contribution of the bulk to the solute transport in the fracture. The mass balance at Γ leads to the equation

$$F_{\Gamma}(u) = [-D\mathbf{n}_{\Gamma} \cdot \nabla u + (\mathbf{n}_{\Gamma} \cdot \mathbf{w})u]_{\Gamma}, \qquad (3)$$

If Γ is piecewise smooth, then we need further conditions on the edges \mathcal{E} .

$$\sum_{j=1}^{M} \mathbf{w}_{\Gamma,j} \cdot \mathbf{n}_{\partial\Gamma,j} = 0, \quad \sum_{j=1}^{M} d_j (D_{\Gamma,j} \mathbf{n}_{\partial\Gamma,j}) \cdot \nabla_{\Gamma} v_j = 0 \quad \text{on} \quad \mathcal{E}.$$
(4)

Initial and boundary conditions:

$$\begin{cases} D_{i}\mathbf{n}_{\partial\Omega}\cdot\nabla u=0 \quad \text{on } \partial\Omega_{N}, \\ u=u_{D} \quad \text{on } \partial\Omega_{D}, \\ u|_{t=0}=u_{0} \quad \text{in } \Omega, \end{cases} \qquad \begin{cases} D_{\Gamma}\mathbf{n}_{\partial\Gamma}\cdot\nabla_{\Gamma}v=0 \quad \text{on } \partial\Gamma_{N}, \\ v=v_{D} \quad \text{on } \partial\Gamma_{D}, \\ v|_{t=0}=v_{0} \quad \text{on } \Gamma. \end{cases}$$

The total surface flux $F_{\Gamma}(u)$ represents the contribution of the bulk to the solute transport in the fracture. The mass balance at Γ leads to the equation

$$F_{\Gamma}(u) = [-D\mathbf{n}_{\Gamma} \cdot \nabla u + (\mathbf{n}_{\Gamma} \cdot \mathbf{w})u]_{\Gamma}, \qquad (3)$$

If Γ is piecewise smooth, then we need further conditions on the edges \mathcal{E} .

$$\sum_{j=1}^{M} \mathbf{w}_{\Gamma,j} \cdot \mathbf{n}_{\partial\Gamma,j} = 0, \quad \sum_{j=1}^{M} d_j (D_{\Gamma,j} \mathbf{n}_{\partial\Gamma,j}) \cdot \nabla_{\Gamma} v_j = 0 \quad \text{on} \quad \mathcal{E}.$$
(4)

Initial and boundary conditions:

$$\begin{cases} D_{i}\mathbf{n}_{\partial\Omega}\cdot\nabla u=0 \quad \text{on } \partial\Omega_{N}, \\ u=u_{D} \quad \text{on } \partial\Omega_{D}, \\ u|_{t=0}=u_{0} \quad \text{in } \Omega, \end{cases} \qquad \begin{cases} D_{\Gamma}\mathbf{n}_{\partial\Gamma}\cdot\nabla_{\Gamma}v=0 \quad \text{on } \partial\Gamma_{N}, \\ v=v_{D} \quad \text{on } \partial\Gamma_{D}, \\ v|_{t=0}=v_{0} \quad \text{on } \Gamma. \end{cases}$$

The total surface flux $F_{\Gamma}(u)$ represents the contribution of the bulk to the solute transport in the fracture. The mass balance at Γ leads to the equation

$$F_{\Gamma}(u) = [-D\mathbf{n}_{\Gamma} \cdot \nabla u + (\mathbf{n}_{\Gamma} \cdot \mathbf{w})u]_{\Gamma}, \qquad (3)$$

If Γ is piecewise smooth, then we need further conditions on the edges \mathcal{E} .

$$\sum_{j=1}^{M} \mathbf{w}_{\Gamma,j} \cdot \mathbf{n}_{\partial\Gamma,j} = 0, \quad \sum_{j=1}^{M} d_j (D_{\Gamma,j} \mathbf{n}_{\partial\Gamma,j}) \cdot \nabla_{\Gamma} v_j = 0 \quad \text{on} \quad \mathcal{E}.$$
(4)

Initial and boundary conditions:

$$\begin{cases} D_{i}\mathbf{n}_{\partial\Omega}\cdot\nabla u=0 \quad \text{on } \partial\Omega_{N}, \\ u=u_{D} \quad \text{on } \partial\Omega_{D}, \\ u|_{t=0}=u_{0} \quad \text{in } \Omega, \end{cases} \quad \begin{cases} D_{\Gamma}\mathbf{n}_{\partial\Gamma}\cdot\nabla_{\Gamma}v=0 \quad \text{on } \partial\Gamma_{N}, \\ v=v_{D} \quad \text{on } \partial\Gamma_{D}, \\ v|_{t=0}=v_{0} \quad \text{on } \Gamma. \end{cases}$$

Approaches. Meshes

Octree meshes with cut-cells (Chernyshenko A., 2013) - modification of Multimaterial marching cubes (Wu Z., Sullivan J.M., 2003) and Cubical marching squares (C.-C. Ho, F.-C.Wu, et al, 2005) algorithms

- \mathcal{T}_h volume octree mesh in Ω
- Γ intersects \mathcal{T}_h in arbitrary way.
- Γ_h irregular triangulation of Γ (*2nd order) is used for integration only. Divides Ω into Ω_{i,h}.

Finally we get a polyhedral mesh (hexahedra + polyhedra)

Approaches. Bulk: Monotone finite volume method

Monotone FV method for the advection-diffusion equations

- 2D: K. Lipnikov, D. Svyatskiy, Yu. Vassilevski, 2012
- 3D advection: Nikitin K., Vassilevski Yu. , 2010
- 3D diffusion: Chernyshenko A., Vassilevski Yu. , 2014

- nonlinear
- compact stencil
- monotone (DMP)
- *2nd order in concentrations

A.Y.Chernyshenko, Yu.V.Vassilevski, Finite volume scheme with the discrete maximum principle for diffusion equations on polyhedral meshes.// FVCA7, 2014.

Approaches. Bulk: Monotone finite volume method

Monotone FV method for the advection-diffusion equations

- 2D: K. Lipnikov, D. Svyatskiy, Yu. Vassilevski, 2012
- 3D advection: Nikitin K., Vassilevski Yu. , 2010
- 3D diffusion: Chernyshenko A., Vassilevski Yu. , 2014

- Diffusive flux $\mathbf{q} = -D\nabla u$
- $D\nabla u \cdot \mathbf{n}_f = \nabla u \cdot (D\mathbf{n}_f) = \nabla u \cdot \mathbf{I}_F$
- $\mathbf{I}_{\mathbf{F}} = \alpha_{+} \mathbf{t}_{1}^{+} + \beta_{+} \mathbf{t}_{2}^{+}$
- $q_+ = A_+ (u_+ u_-) + B_+ (u_+ u_{+,2})$ $q_- = A_- (u_- - u_+) + B_- (u_- - u_{-,2})$

A.Y.Chernyshenko, Yu.V.Vassilevski, Finite volume scheme with the discrete maximum principle for diffusion equations on polyhedral meshes,// FVCA7, 2014.

Approaches. Surface: The trace finite element method.

- \mathcal{T}_h octree cubic mesh covering Ω
- $\Gamma_h = \bigcup_{K \in \mathcal{F}_h} K$ approximation of Γ . For any $K \in \mathcal{F}_h$ there is only *one* cell $T_K \in \mathcal{T}_h$ such that $K \subset T_K$
- Γ_h := {x ∈ Ω : φ_h(x) = 0}, where φ_h interpolant to φ level set function of Γ. Finding φ_h, we recover Γ_h by Cubical marcing squares.

Approaches. Surface: The trace finite element method.

- V_h volumetric finite element space . $V_h := \{v_h \in C(\Omega) \mid v_h|_S \in Q_1 \quad \forall S \in \mathcal{T}_h\}$, where Q_1 -all piecewise trilinear continuous functions with respect to the bulk octree mesh \mathcal{T}_h .
- V_h^Γ the space of traces on Γ_h of all piecewise trilinear continuous functions with respect to the outer triangulation T_h
 V_h^Γ := {ψ_h ∈ H¹(Γ_h) | ∃ v_h ∈ V_h such that ψ_h = v_h|_{Γ_h}}.
- FE-discretization of (2): Find $v_h \in V_h^{\Gamma}$ such that

$$\int_{\Gamma_{h}} \left(\phi_{\Gamma,h} \frac{\partial v_{h}}{\partial t} w_{h} + d_{h} D_{\Gamma,h} \nabla_{\Gamma_{h}} v_{h} \cdot \nabla_{\Gamma_{h}} w_{h} + (\mathbf{w}_{h} \cdot \nabla_{\Gamma_{h}} v_{h}) w_{h} \right) \\ + (\operatorname{div}_{\Gamma_{h}} \mathbf{w}_{h}) u_{h} v_{h} \mathrm{d} \mathbf{s}_{h} = \int_{\Gamma_{h}} (F_{\Gamma,h}(u_{h}) + f_{\Gamma,h}) w_{h} \, \mathrm{d} \mathbf{s}_{h} \quad (6)$$

for all $w_h \in V_h^{\Gamma}$

A.Y.Chernyshenko, M.A. Olshanski, An adaptive octree finite element method for PDEs posed on surfaces, //CMAME, 2015.

(日) (四) (王) (王) (王)

The trace finite element method. Variants

- Uniform refinement or local refinement depending on error indicators and surface curvatures
- Full gradient ∇ or tangential gradient $\nabla_{\Gamma} (\nabla_{\Gamma} u = \nabla u^{e \times t})$.
- SUPG stabilized method

Numerical analysis and error estimates can be found in

A.Y.Chernyshenko, M.A. Olshanski, An adaptive octree finite element method for PDEs posed on surfaces //CMAME, 2015.

- < A > < B > < B >

	surface gradient variant				full gradient variant			
#d.o.f.	L ² -norm	rate	L^{∞} -norm	rate	L ² -norm	rate	L^{∞} -norm	rate
297	2.415e-1		7.898e-1		3.199e-1		8.861e-1	
1289	5.047e-2	2.26	2.123e-1	1.90	8.406e-2	1.93	4.437e-1	0.98
5001	1.049e-2	2.27	5.400e-2	1.98	1.956e-2	2.10	8.562e-2	2.37
20073	2.367e-3	2.15	1.341e-2	2.01	4.979e-3	1.97	2.184e-2	1.97

The trace finite element method. Numerical experiments

$$\phi(\mathbf{x}) = \frac{1}{4}x_1^2 + x_2^2 + \frac{4x_3^2}{(1 + \frac{1}{2}\sin(\pi x_1))^2} - 1.$$

 $\mathbf{w}_{\Gamma} = 0$, $D_{\Gamma} = 1$, $u = x_1 x_2$ on Γ .

G. Dziuk and C. M. Elliott, Finite element methods for surface PDEs, Acta Numerica (2013).

The trace finite element method. Numerical experiments

$$\phi(\mathbf{x}) = \frac{1}{4}x_1^2 + x_2^2 + \frac{4x_3^2}{(1 + \frac{1}{2}\sin(\pi x_1))^2} - 1.$$

 $\mathbf{w}_{\Gamma} = 0$, $D_{\Gamma} = 1$, $u = x_1 x_2$ on Γ .

Return to bulk-surface coupled problem

æ

イロト イヨト イヨト イヨト

- Boundary condition $u_i = v$ on $\partial \Omega_{i,h} \cap \Gamma_h$
- Net flux $F_{\Gamma_h}(u)$ on Γ_h

We assume an implicit time stepping method. This results in the following system on each time step.

$$\begin{cases} \mathcal{L}u := \tilde{\phi}u + \operatorname{div}(\mathbf{w}u - D\nabla)u = \hat{f} & \text{in } \Omega \setminus \Gamma, \\ u = v & \text{on } \Gamma, \\ D\mathbf{n}_{\partial\Omega} \cdot \nabla u = 0 & \text{on } \partial\Omega_N, \quad u = u_D & \text{on } \partial\Omega_D, \\ \mathcal{L}_{\Gamma}v := \tilde{\phi}_{\Gamma}v + \operatorname{div}_{\Gamma}(\mathbf{w}_{\Gamma}v - dD_{\Gamma}\nabla_{\Gamma}v) = F_{\Gamma}(u) + \hat{f}_{\Gamma} & \text{on } \Gamma, \\ D_{\Gamma}\mathbf{n}_{\partial\Gamma} \cdot \nabla v = 0 & \text{on } \partial\Gamma_N, \quad v = v_D & \text{on } \partial\Gamma_D, \end{cases}$$

We solve the coupled system by the fixed point method. Given u^0, v^0 , the initial guess, we iterate for k = 0, 1, 2, ... until convergence: Step 1: Solve for u^{k+1} ,

$$\begin{cases} \mathcal{L}u^{k+1} = \hat{f} \text{ in } \Omega \setminus \Gamma, \quad u^{k+1} = v^k \quad \text{on } \Gamma, \\ D\mathbf{n}_{\partial\Omega} \cdot \nabla u^{k+1} = 0 \quad \text{on } \partial\Omega_N, \quad u^{k+1} = u_D \quad \text{on } \partial\Omega_D, \end{cases}$$
(7)

Step 2: Solve for v^{aux} and update for v^{k+1} with a relaxation parameter ω ,

$$\begin{cases} \mathcal{L}_{\Gamma} v^{\mathrm{aux}} = F_{\Gamma}(u^{k+1}) + \hat{f}_{\Gamma} \quad \text{on } \Gamma, \\ D_{\Gamma} \mathbf{n}_{\partial \Gamma} \cdot \nabla_{\Gamma} v^{\mathrm{aux}} = 0 \quad \text{on } \partial \Gamma_{N}, \quad v^{\mathrm{aux}} = v_{D} \quad \text{on } \partial \Gamma_{D} \\ v^{k+1} = \omega v^{\mathrm{aux}} + (1-\omega)v^{k}, \quad \omega \in (0,1], \end{cases}$$
(8)

We solve the coupled system by the fixed point method. Given u^0, v^0 , the initial guess, we iterate for k = 0, 1, 2, ... until convergence: Step 1: Solve for u^{k+1} ,

$$\begin{cases} \mathcal{L}u^{k+1} = \hat{f} \text{ in } \Omega \setminus \Gamma, \quad u^{k+1} = v^k \quad \text{on } \Gamma, \\ D\mathbf{n}_{\partial\Omega} \cdot \nabla u^{k+1} = 0 \quad \text{on } \partial\Omega_N, \quad u^{k+1} = u_D \quad \text{on } \partial\Omega_D, \end{cases}$$
(7)

Step 2: Solve for v^{aux} and update for v^{k+1} with a relaxation parameter ω ,

$$\begin{cases} \mathcal{L}_{\Gamma} v^{\mathrm{aux}} = F_{\Gamma}(u^{k+1}) + \hat{f}_{\Gamma} \quad \text{on } \Gamma, \\ D_{\Gamma} \mathbf{n}_{\partial \Gamma} \cdot \nabla_{\Gamma} v^{\mathrm{aux}} = 0 \quad \text{on } \partial \Gamma_{N}, \quad v^{\mathrm{aux}} = v_{D} \quad \text{on } \partial \Gamma_{D} \\ v^{k+1} = \omega v^{\mathrm{aux}} + (1-\omega) v^{k}, \quad \omega \in (0,1], \end{cases}$$
(8)

 Solve PDE on surface using TraceFEM

A. Chernyshenko, M. Olshanskii (INM RAS)

 Get solution at centers of triangles

- Solve 3D problems in subdomains
- Calculate fluxes through the triangles

 $\Omega=[0,1]^3,$ $\Gamma=\Gamma_{12}\cup\Gamma_{13}\cup\Gamma_{23}$ - divides Ω into three parts Consider functions

$$\phi_1 = \begin{cases} 16(y - y_0)^4, & y > y_0 \\ 0, & y \le y_0 \end{cases}$$

and $\phi_2 = x - y$, $\phi_3 = x + y - 1$. For the exact solution which is continuous but has derivative jump we take the function

$$\begin{cases} u_1 = \sin(2\pi z) \cdot \phi_2 \cdot \phi_3 & \text{in } \Omega_1 \\ u_2 = \sin(2\pi z) \cdot \phi_1 & \text{in } \Omega_2 \\ u_3 = \sin(2\pi z) 2x \cdot \phi_1 & \text{in } \Omega_3 \end{cases}$$

 $\Omega=[0,1]^3,$ $\Gamma=\Gamma_{12}\cup\Gamma_{13}\cup\Gamma_{23}$ - divides Ω into three parts Consider functions

$$\phi_1 = \begin{cases} 16(y - y_0)^4, & y > y_0 \\ 0, & y \le y_0 \end{cases}$$

and $\phi_2 = x - y$, $\phi_3 = x + y - 1$. For the exact solution which is continuous but has derivative jump we take the function

$$\begin{cases} u_1 = \sin(2\pi z) \cdot \phi_2 \cdot \phi_3 & \text{in } \Omega_1 \\ u_2 = \sin(2\pi z) \cdot \phi_1 & \text{in } \Omega_2 \\ u_3 = \sin(2\pi z) 2x \cdot \phi_1 & \text{in } \Omega_3 \end{cases}$$

Table: Convergence of numerical solutions

	#d.o.f.	L ² -norm	rate	H ¹ -norm	rate	L^{∞} -norm	rate
3D	855	6.374e-3		4.214e-1		3.920e-2	
	7410	1.698e-3	1.84	1.631e-1	1.36	1.276e-2	1.56
	61620	4.235e-4	1.97	6.193e-2	1.39	3.506e-3	1.83
	502440	1.044e-4	2.00	2.348e-2	1.40	1.129e-3	1.62
Surface	232	8.469e-3		2.914e-1		9.280e-3	
	1242	2.003e-3	1.79	1.387e-1	0.92	2.779e-3	1.44
	5662	5.588e-4	1.84	6.874e-2	1.01	1.217e-3	1.09
	24102	1.791e-4	1.64	3.395e-2	1.02	5.181e-4	1.18

Image: Image:

< 3 > < 3 >

Next we rotate the fracture around the line x = 0.5, z = 0.5 by angle α .

Figure: $\alpha = 20.3D$ mesh, error on rotated fracture (right)

Numerical examples. Steady solution for a triple fracture problem

Next we rotate the fracture around the line x = 0.5, z = 0.5 by angle α .

Figure: $\alpha = 40$. Surface mesh, error on rotated fracture (right)

Next we rotate the fracture around the line x = 0.5, z = 0.5 by angle α .

Figure: $\alpha = 40$. 3D mesh, solution on 3D mesh

Table: Convergence of numerical solutions. $\alpha = 20$

	#d.o.f.	L ² -norm	rate	H ¹ -norm	rate	L^{∞} -norm	rate
3D	965	6.319e-3		4.208e-1		3.754e-2	
	7872	1.805e-3	1.79	1.661e-1	1.34	1.280e-2	1.55
	63592	5.623e-4	1.80	6.371e-2	1.38	3.411e-3	1.90
	510390	1.602e-4	1.81	2.442e-2	1.39	1.146e-3	1.57
Surface	321	7.792e-3		2.694e-1		2.716e-2	
	1692	2.084e-3	1.59	1.240e-1	1.03	5.400e-3	1.94
	7944	7.019e-4	1.41	6.291e-2	0.97	2.001e-3	1.29
	33272	2.441e-4	1.52	3.173e-2	0.99	7.217e-3	1.47

э

(日) (同) (三) (三)

Table: Convergence of numerical solutions. $\alpha = 40$

	#d.o.f.	L ² -norm	rate	H ¹ -norm	rate	L^{∞} -norm	rate
3D	991	5.934e-3		4.080e-1		3.783e-2	
	7996	1.700e-3	1.80	1.621e-1	1.33	1.276e-2	1.56
	64046	4.907e-4	1.80	6.263e-2	1.37	3.515e-3	1.86
	512258	1.503e-4	1.82	2.541e-2	1.39	1.237e-3	1.61
Surface	353	8.167e-3		2.709e-1		2.696e-2	
	1932	2.146e-3	1.66	1.275e-1	1.02	5.566e-3	1.85
	8766	7.115e-4	1.59	6.279e-2	0.97	2.063e-3	1.31
	36676	2.538e-4	1.49	3.121e-2	1.01	7.251e-4	1.51

э

(日) (同) (三) (三)

Boundary conditions: on the y = 1 we have u = 1 - constant concentration of a contaminant , on others: $\frac{\partial u}{\partial \mathbf{n}_{\partial \Omega}} = 0$ u(0) = 0 in Ω and v(0) = 0 on Γ . The velocity field: $\mathbf{w} = 2k(0, -1, 0)^T$ in Ω

$$\begin{cases} \mathbf{w}_{\Gamma,1} &= 5k(0,-1,0), \\ \mathbf{w}_{\Gamma,2} &= 5k(-1/\sqrt{2},-1/\sqrt{2},0), \\ \mathbf{w}_{\Gamma,3} &= 5k(1/\sqrt{2},-1/\sqrt{2},0), \end{cases}$$

For the case of diffusion domination k = 1/8, advection-dominated problem k = 8.

$$D_1 = D_2 = 0.1 I$$
, $d = 1$, $D_{\Gamma} = I$, $\phi_1 = \phi_2 = \phi_{\Gamma} = 1$.

・ロト ・回ト ・ヨト ・ヨト

2

2

In the fracture the wind is constant $\mathbf{w}_{\Gamma} = (w_1, 0, w_3)$, $|\mathbf{w}_{\Gamma}| = 1$, and the contaminant source occupies the part of $\partial \Gamma$, $\partial \Gamma_D = \{(0, y, 0.51) : y \in (\frac{1}{4}, \frac{3}{4})\}$, $v_D = 1$ on $\partial \Gamma_D$.

This is a bulk–surface variant of a standard test case of numerical solvers for convection–diffusion problems (N.-E. Sun, A.Sun, 2013)

Figure: Reference 2D solution (left) and the fracture component of the computed solution (right) for the contaminant transport along the fracture test case. The solutions is shown for the time t = 0.17.

Figure: Reference 2D solution (left) and the fracture component of the computed solution (right) for the contaminant transport along the fracture test case. The solutions is shown for the times t = 0.34.

Figure: Reference 2D solution (left) and the fracture component of the computed solution (right) for the contaminant transport along the fracture test case. The solutions is shown for the times t = 0.5.

- We studied a hybrid FV-FE method for bulk-surface coupled problems
- The method based on: octree meshes with cut-cells, non-linear FV scheme for polyhedral meshes, trace octree FEM
- The 3D-mesh is unfitted to a surface, the method works for surfaces defined implicitly, parametrization of a surface is not required
- Numerical experiments shows optimal order of convergence

Further work

- Stabilized method for Darcy flow
- Realistic geometries

Chernyshenko A.Yu., Olshanskii M.A., Vassilevski Yu.V, A hybrid finite volume – finite element method for bulk-surface coupled problems. // JCP, V. 352, 2018.

(日) (周) (三) (三)

Thank You for attention!