Homogenization of the Steklov Spectral Problem for the System of Elasticity

Aleksandra Chechkina

Lomonosov Moscow State University

Aleksandra Chechkina

Moscow, August 16, 2018

The Domain

Let Ω be a smooth domain in \mathbb{R}^d , $d \ge 2$.

We suppose that the boundary $\partial \Omega = \gamma_1 \cup \gamma_{\varepsilon} \cup \Gamma_{\varepsilon}$. Γ_{ε} consists of the sets Γ_{ε}^m , $m = 1, \ldots, N_{\varepsilon}$, the diameter of Γ_{ε}^m is less then or equals to ε , and the distance between them is greater than or equals to 2ε , where ε is a positive small parameter.

Problem setup

Consider the spectral problem

$$\begin{cases} L_k(u_{\varepsilon}^n) := \frac{\partial}{\partial x_i} \left(a_{kl}^{ij} \frac{\partial u_{\varepsilon}^l}{\partial x_j} \right) = 0 \text{ in } \Omega, \ k = 1, \dots, d, \\ u_{\varepsilon}^n = 0 \text{ on } \gamma_1 \cup \gamma_{\varepsilon}, \\ \sigma(u_{\varepsilon}^n) := A^{ij}(x) \frac{\partial u_{\varepsilon}}{\partial x_j} \nu_i = \lambda_{\varepsilon}^n u_{\varepsilon}^n \text{ on } \Gamma_{\varepsilon}, \ n = 1, 2, \dots \end{cases}$$
(1)

Here and throughout we assume the summation on the repeated indices.

Here $u_{\varepsilon}^{n} \in (H^{1}(\Omega, \gamma_{1} \cup \gamma_{\varepsilon}))^{d}$, n = 1, 2, ...The set $\{\lambda_{\varepsilon}^{n}\}$, n = 1, 2, ..., is the set of eigenvalues such that $\lambda_{\varepsilon}^{1} \leq \lambda_{\varepsilon}^{2} \leq \cdots \leq \lambda_{\varepsilon}^{n} \leq \cdots$, where the eigenvalues repeat according to their multiplicities.

Aleksandra Chechkina

Problem setup

 A^{ij} are matrices $(d \times d)$ with elements a^{ij}_{kl} , which are bounded measurable functions, $a^{ij}_{kl}(x) = a^{ji}_{lk}(x) = a^{kj}_{il}(x)$,

$$\varkappa_1\xi_{ki}\xi_{ki}\leqslant a_{kl}^{ij}(x)\xi_{ki}\xi_{lj}\leqslant \varkappa_2\xi_{ki}\xi_{ki}, \ \ \varkappa_1,\varkappa_2=const>0, \ \ x\in\Omega,$$

where $\{\xi_{ki}\}\$ are real symmetric matrices, $\nu = (\nu_1, \dots, \nu_d)$ is an outward normal vector to the boundary $\partial\Omega$.

Aleksandra Chechkina

Problem setup

We study the limit behavior of eigenelements of problem (1), when ε tends to zero and $N_{\varepsilon} = O(|\ln \varepsilon|^{(1-\frac{\delta}{2})d-1}), 0 < \delta < 2 - \frac{2}{d}$, where N_{ε} is the number of Γ_{ε}^{m} on the boundary. The space $H^{1}(\Omega, \gamma_{1} \cup \gamma_{\varepsilon})$ is defined as the completion of the functions from the space $C^{\infty}(\overline{\Omega})$, vanishing in a neighborhood of $\gamma_{1} \cup \gamma_{\varepsilon}$, with respect to the norm

$$\|v\|_{H^1(\Omega)} = \left(\int\limits_{\Omega} \left(v^2 + |\nabla v|^2\right) dx\right)^{\frac{1}{2}}.$$

Aleksandra Chechkina

Moscow, August 16, 2018

Consider the boundary-value problem corresponding to spectral problem (1). We have

$$\begin{cases} L(u_{\varepsilon}) = 0 \quad \text{in} \quad \Omega, \\ u_{\varepsilon} = 0 \quad \text{on} \quad \gamma_1 \cup \gamma_{\varepsilon}, \\ \sigma(u_{\varepsilon}) = g(x) \quad \text{on} \quad \Gamma_{\varepsilon}, \end{cases}$$
(2)

where
$$g(x) \in \left(L_2(\partial\Omega)
ight)^d$$
, $u_arepsilon = (u_{arepsilon,1},\ldots,u_{arepsilon,d})^{\mathcal{T}}$ and

$$L(u) = (L_1(u), \ldots, L_d(u))^T := \frac{\partial}{\partial x_i} (A^{ij}(x) \frac{\partial u_{\varepsilon}}{\partial x_j}).$$

Aleksandra Chechkina

Moscow, August 16, 2018

Let $\Omega_{\eta} = \{x : x \in \Omega, \rho(x, \partial\Omega) \leq \eta\}$, where $\rho(x, \partial\Omega)$ is the distance between x and $\partial\Omega$.

Lemma 1

For the functions u from the space $H^1(\Omega, \gamma_1 \cup \gamma_{\varepsilon})$ the following estimate

$$\int_{\Omega_{\eta}} u^2 dx \leqslant C_1 \eta^2 \int_{\Omega_{\eta}} |\nabla u|^2 dx$$

holds true, where the constant C_1 does not depend on ε, η and u.

Aleksandra Chechkina

Lemma 2

For the function u from the space $H^1(\Omega, \gamma_1 \cup \gamma_{\varepsilon})$ the estimate

$$\int_{\Omega} u^2 dx \leqslant C_2 \int_{\Omega} |\nabla u|^2 dx,$$

is valid, where the constant C_2 does not depend on ε and u.

Aleksandra Chechkina

Moscow, August 16, 2018

The next Theorem is connected with Korn's inequality for strains and stresses.

Lemma 3 (Korn's type inequality)

For the function $u(x) = (u^1(x), \dots, u^d(x))^T$ from the space $(H^1(\Omega, \gamma_1 \cup \gamma_\varepsilon))^d$ the inequality $\int_{\Omega} \sum_{i=1}^d |\nabla u^i|^2 dx \leqslant C_3 \int_{\Omega} \sum_{i,j=1}^d (\frac{\partial u^i}{\partial x_j} + \frac{\partial u^j}{\partial x_i})^2 dx \leqslant$ $\leqslant C_4 \int_{\Omega} \sum_{i,j,k,l=1}^d a_{kl}^{ij}(x) \frac{\partial u^l}{\partial x_j} \frac{\partial u^k}{\partial x_i} dx$

holds true, where C_3 , C_4 are independent of u and ε .

Aleksandra Chechkina

Moscow, August 16, 2018

Lemma 4

If the domain G is star-shaped with respect to the ball Q, then the following Korn's type inequality

$$D(u,G) \leqslant C_5(E(u,G) + D(u,Q))$$

is valid, where C_5 is a constant, which does not depend on u, E and D are the following functions:

$$D(u,\Omega) \equiv \int_{\Omega} \sum_{i=1}^{d} |\nabla u^{i}|^{2} dx, \quad E(u,\Omega) \equiv \int_{\Omega} \sum_{i,j=1}^{d} \left(\frac{\partial u^{i}}{\partial x_{j}} + \frac{\partial u^{j}}{\partial x_{i}}\right)^{2} dx.$$

Aleksandra Chechkina

Moscow, August 16, 2018

Lemma 5

The solutions u_{ε} of the problem (2) are uniformly bounded with respect to ε in $H^1(\Omega)$.

Now define the cut-off function
$$\psi(s) \in C^{\infty}(\mathbb{R})$$
 such that $\psi(s) = 0$,
when $s \in [-\infty, 1]$, $\psi(s) = 1$, when
 $s \ge 1 + \sigma, 0 < \sigma < \frac{1}{2}, 0 \le \psi(s) \le 1$.

Aleksandra Chechkina

Moscow, August 16, 2018

Lemma 6

For the solutions u_{ε} of the problem (2) the estimate

$$\int\limits_{\Omega} |\nabla u_{\varepsilon}|^2 \psi_{\varepsilon}^2(x) dx \leqslant C_6 |\ln \varepsilon|^{-\delta}$$

is valid, where the constant C_6 does not depend on ε ; $\psi_{\varepsilon}(x) = \prod_{m=1}^{N_{\varepsilon}} \psi_{\varepsilon}^m(x), \psi_{\varepsilon}^m(x) = \psi(\frac{|\ln \varepsilon|}{|\ln r_m|}), \text{ where } (r_m, \theta_m^1, \dots, \theta_m^{d-1})$ is a local system of polar coordinates with the center in $p_{\varepsilon}^m \subset \Gamma_{\varepsilon}^m$.

Aleksandra Chechkina

Moscow, August 16, 2018

Lemma 7

For the solution u_{ε} of the problem (2) the estimate

$$\int_{\Omega} |u_{\varepsilon}|^2 dx \leqslant C_7 |\ln \varepsilon|^{-\delta}, \ 0 < \delta < 2 - \frac{2}{d}$$

is valid.

Aleksandra Chechkina

Moscow, August 16, 2018

Auxiliary Propositions General Method

Now we use the Oleinik -losifian-Shamaev method to estimate the eigenvalues. Let H_{ε} and H_0 be two separable Hilbert spaces with the scalar products $(\cdot, \cdot)_{\varepsilon}$ and $(\cdot, \cdot)_0$, respectively. Let $A_{\varepsilon} \in \mathcal{L}(H_{\varepsilon})$ and $A_0 \in \mathcal{L}(H_0)$ be linear operators. Let V be a linear subspace of H_0 such that $\{v : v = A_0 u, u \in H_0\} \subset V$. Let $\{\mu_{\varepsilon}^n\}_{n=1}^{\infty}$ and $\{\mu_0^n\}_{n=1}^{\infty}$ be the sequences of the eigenvalues of A_{ε} and A_0 , respectively, with the classical convention of repeated eigenvalues. Let $\{w_{\varepsilon}^n\}_{n=1}^{\infty}$ and $(\{w_0^n\}_{n=1}^{\infty}, \text{ respectively})$ be the corresponding eigenfunctions in H_{ε} , which are assumed to be orthonormal $(H_0, \text{ respectively})$.

Aleksandra Chechkina

Auxiliary Propositions General Method

We assume that the following properties are satisfied:

- C1 There exists $R_{\varepsilon} \in \mathcal{L}(H_0, H_{\varepsilon})$ such that $(R_{\varepsilon}F, R_{\varepsilon}F)_{H_{\varepsilon}} \xrightarrow{\varepsilon \to 0} \varkappa_0(F, F)_{H_0}$, for all $F \in V$ and certain positive constant \varkappa_0 .
- C2 The operators A_ε and A₀ are positive, compact and selfadjoint. Moreover, ||A_ε||_{L(Hε)} are bounded by a constant, independent of ε.
- $C3 \| \mathbf{A}_{\varepsilon} \mathbf{R}_{\varepsilon} \mathbf{F} \mathbf{R}_{\varepsilon} \mathbf{A}_{0} \mathbf{F} \|_{\mathbf{H}_{\varepsilon}} \xrightarrow{\varepsilon \to 0} 0$ for all $\mathbf{F} \in \mathbf{V}$.
- C4 The family of operators \mathbf{A}_{ε} is uniformly compact, i.e., for any sequence F^{ε} in \mathbf{H}_{ε} such that $\sup_{\varepsilon} \|F^{\varepsilon}\|_{\mathbf{H}_{\varepsilon}}$ is bounded by a constant independent of ε , we can extract a subsequence $F^{\varepsilon'}$, that verifies the following: $\|\mathbf{A}_{\varepsilon'}F^{\varepsilon'} - \mathbf{R}_{\varepsilon'}v^0\|_{\mathbf{H}_{\varepsilon'}} \to 0$, as $\varepsilon' \to 0$, for certain $v^0 \in \mathbf{H}_0$.

Auxiliary Propositions General Method

Then, for each k, there exists a constant C_8^k , independent of ε , such that

$$|\mu_{\varepsilon}^{k} - \mu_{0}^{k}| \leqslant C_{8}^{k} \sup_{\substack{u \in \mathcal{N}(\mu_{0}^{k}, \mathbf{A}_{0}), \\ \|u\|_{\mathbf{H}_{0}} = 1}} \|\mathbf{A}_{\varepsilon}\mathbf{R}_{\varepsilon}u - \mathbf{R}_{\varepsilon}\mathbf{A}_{0}u\|_{\mathbf{H}_{\varepsilon}},$$
(3)

where $\mathcal{N}(\mu_0^k, \mathbf{A}_0) = \{ \mu \in \mathbf{H}_0, \mathbf{A}_0 u \in \mathbf{H}_0, \mathbf{A}_0, \mathbf{A}_0 u \in \mathbf{H}_0, \mathbf{A}_0, \mathbf{A}_0 u \in \mathbf{H}_0, \mathbf{A}_0, \mathbf{A}_0,$

$$\|w^{\varepsilon} - \mathbf{R}_{\varepsilon}w\|_{\mathbf{H}_{\varepsilon}} \leqslant C_{9}^{k}\|\mathbf{A}_{\varepsilon}\mathbf{R}_{\varepsilon}w - \mathbf{R}_{\varepsilon}\mathbf{A}_{0}w\|_{\mathbf{H}_{\varepsilon}},$$

where the constant C_9^k is independent on ε .

Aleksandra Chechkina

Moscow, August 16, 2018

Main Result

Define the operator $\mathbf{A}_{\varepsilon}: L_2(\partial \Omega)^d \to H^1(\Omega, \gamma_1 \cup \gamma_{\varepsilon})^d$, setting $\mathbf{A}_{\varepsilon} g = u_{\varepsilon} |_{\partial \Omega}$, where u_{ε} is the solution of the problem (2). The operator A_0 is the zero operator. Let $H_{\varepsilon} = H_0 = L_2(\partial \Omega), V = H^1(\Omega, \partial \Omega)$ and let R_{ε} be an identical operator in $L_2(\partial \Omega)$. Let us verify the conditions C1-C4. The condition C1 is fulfilled automatically. It is easy to establish the positiveness, self-adjointness and compactness of the operators A_{ϵ} . The norms $\|\mathbf{A}_{\varepsilon}\|_{\mathcal{L}(\mathbf{H}_{\varepsilon})}$ are uniformly bounded with respect to ε by virtue of Lemma 5. Here $\mathcal{L}(\boldsymbol{H}_{\varepsilon})$ is the space of linear operators on $\boldsymbol{H}_{\varepsilon}$. In view of Lemma 7 the condition C3 takes place. If a sequence $\{\mathbf{A}_{\varepsilon}f_{\varepsilon}\}$ is bounded in $H^{1}(\Omega, \gamma_{1} \cup \gamma_{\varepsilon})$, therefore, it is compact in $L_2(\Omega)$. Because of Lemma 5 the condition C4 is fulfilled.

Main Result

Consider the spectral problem

$$\boldsymbol{A}_{\varepsilon}\boldsymbol{u}_{\varepsilon}^{n} = \mu_{\varepsilon}^{n}\boldsymbol{u}_{\varepsilon}^{n}, \ \mu_{\varepsilon}^{1} \ge \mu_{\varepsilon}^{2} \ge \cdots, \ n = 1, 2, \ldots$$

It is obvious, that $\mu_{\varepsilon}^{n} = \frac{1}{\lambda_{\varepsilon}^{n}}$, where $\lambda_{\varepsilon}^{n}$ is the *n*-th eigenvalue of the problem (1). Then formula (3) of Oleinik–losifian–Shamaev method gives us:

$$|\mu_{\varepsilon}^{n}| \leqslant C_{10} \sup_{\|u\|_{H_{0}=1}} \|\boldsymbol{A}_{\varepsilon}u\|_{\boldsymbol{H}_{\varepsilon}}, \qquad (4)$$

 $n = 1, 2, \dots$ Thus the next Theorem follows from (4) and Lemma 7:

Aleksandra Chechkina

Main Result

Theorem

There exists such a constant C independent of ε , that for eigenvalues $\lambda_{\varepsilon}^{n}$ of the problem (1), the estimate

 $\lambda_{\varepsilon}^n \geqslant C |\ln \varepsilon|^{\delta}$

is valid for sufficiently small ε , where $0 < \delta < 2 - \frac{2}{d}, N_{\varepsilon} = O(|\ln \varepsilon|^{\left(1 - \frac{\delta}{2}\right)d - 1})$ as $\varepsilon \to 0$.

Aleksandra Chechkina

Moscow, August 16, 2018

 A. CHECHKINA, C. D'APICE, U. DE MAIO. Rate of Convergence of Eigenvalues to Singularly Perturbed Steklov-Type Problem for Elasticity System. *Applicable Analysis* DOI: 10.1080/00036811.2017.1416104

Aleksandra Chechkina

Moscow, August 16, 2018

Thank you for your attention!

Aleksandra Chechkina

Moscow, August 16, 2018

Homogenization of the Steklov Spectral Problem for the System of Elasticity

21/ 21