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The Domain

Let Ω be a smooth domain in R
d
, d > 2.

We suppose that the boundary ∂Ω = γ1 ∪ γε ∪ Γε. Γε 
onsists of

the sets Γmε , m = 1, . . . ,Nε, the diameter of Γmε is less then or

equals to ε, and the distan
e between them is greater than or

equals to 2ε, where ε is a positive small parameter.
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Problem setup

Consider the spe
tral problem















Lk(u
n
ε ) :=

∂
∂xi

(

a
ij
kl

∂ulε
∂xj

)

= 0 in Ω, k = 1, . . . , d ,

unε = 0 on γ1 ∪ γε,

σ(unε ) := Aij(x)∂uε
∂xj
νi = λnεu

n
ε on Γε, n = 1, 2, . . .

(1)

Here and throughout we assume the summation on the repeated

indi
es.

Here unε ∈ (H1(Ω, γ1 ∪ γε))
d , n = 1, 2, . . .

The set {λnε}, n = 1, 2, . . . , is the set of eigenvalues su
h that

λ1ε 6 λ2ε 6 · · · 6 λnε 6 · · · , where the eigenvalues repeat a

ording

to their multipli
ities.
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Problem setup

Aij
are matri
es (d × d) with elements a

ij
kl , whi
h are bounded

measurable fun
tions, a
ij
kl (x) = a

ji
lk(x) = a

kj
il (x),

κ1ξkiξki 6 a
ij
kl
(x)ξkiξlj 6 κ2ξkiξki , κ1,κ2 = const > 0, x ∈ Ω,

where {ξki} are real symmetri
 matri
es, ν = (ν1, . . . , νd ) is an
outward normal ve
tor to the boundary ∂Ω.
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Problem setup

We study the limit behavior of eigenelements of problem (1), when

ε tends to zero and Nε = O(| ln ε|(1−
δ
2
)d−1), 0 < δ < 2− 2

d
, where

Nε is the number of Γmε on the boundary. The spa
e H1(Ω, γ1 ∪ γε)
is de�ned as the 
ompletion of the fun
tions from the spa
e

C∞(Ω), vanishing in a neighborhood of γ1 ∪ γε, with respe
t to the

norm

‖v‖H1(Ω) =
(

∫

Ω

(

v2 + |∇v |2
)

dx
)

1
2
.
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Auxiliary Propositions

Consider the boundary-value problem 
orresponding to spe
tral

problem (1). We have











L(uε) = 0 in Ω,

uε = 0 on γ1 ∪ γε,

σ(uε) = g(x) on Γε,

(2)

where g(x) ∈
(

L2(∂Ω)
)d

, uε = (uε,1, . . . , uε,d)
T
and

L(u) = (L1(u), . . . , Ld (u))
T :=

∂

∂xi

(

Aij(x)
∂uε

∂xj

)

.
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Auxiliary Propositions

Let Ωη = {x : x ∈ Ω, ρ(x , ∂Ω) 6 η}, where ρ(x , ∂Ω) is the
distan
e between x and ∂Ω.

Lemma 1

For the fun
tions u from the spa
e H1(Ω, γ1 ∪ γε) the following

estimate

∫

Ωη

u2dx 6 C1η
2

∫

Ωη

|∇u|2dx

holds true, where the 
onstant C1 does not depend on ε, η and u.
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Auxiliary Propositions

Lemma 2

For the fun
tion u from the spa
e H1(Ω, γ1 ∪ γε) the estimate

∫

Ω

u2dx 6 C2

∫

Ω

|∇u|2dx ,

is valid, where the 
onstant C2 does not depend on ε and u.
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Auxiliary Propositions

The next Theorem is 
onne
ted with Korn's inequality for strains

and stresses.

Lemma 3 (Korn's type inequality)

For the fun
tion u(x) = (u1(x), . . . , ud (x))T from the spa
e

(

H1(Ω, γ1 ∪ γε)
)d

the inequality

∫

Ω

d
∑

i=1

|∇ui |2dx 6 C3

∫

Ω

d
∑

i ,j=1

(∂ui

∂xj
+
∂uj

∂xi

)2
dx 6

6 C4

∫

Ω

d
∑

i ,j ,k,l=1

a
ij
kl (x)

∂ul

∂xj

∂uk

∂xi
dx

holds true, where C3, C4 are independent of u and ε.
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Auxiliary Propositions

Lemma 4

If the domain G is star�shaped with respe
t to the ball Q, then the

following Korn's type inequality

D(u,G ) 6 C5

(

E (u,G ) + D(u,Q)
)

is valid, where C5 is a 
onstant, whi
h does not depend on u, E

and D are the following fun
tions:

D(u,Ω) ≡

∫

Ω

d
∑

i=1

|∇ui |2dx , E (u,Ω) ≡

∫

Ω

d
∑

i ,j=1

(∂ui

∂xj
+
∂uj

∂xi

)2
dx .
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Auxiliary Propositions

Lemma 5

The solutions uε of the problem (2) are uniformly bounded with

respe
t to ε in H1(Ω).

Now de�ne the 
ut-o� fun
tion ψ(s) ∈ C∞(R) su
h that ψ(s) = 0,
when s ∈ [−∞, 1], ψ(s) = 1, when
s > 1 + σ, 0 < σ < 1

2 , 0 6 ψ(s) 6 1.
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Auxiliary Propositions

Lemma 6

For the solutions uε of the problem (2) the estimate

∫

Ω

|∇uε|
2ψ2

ε(x)dx 6 C6| ln ε|
−δ

is valid, where the 
onstant C6 does not depend on ε;

ψε(x) =
Nε
∏

m=1
ψm
ε (x), ψ

m
ε (x) = ψ

( | ln ε|
| ln rm |

)

, where (rm, θ
1
m, . . . , θ

d−1
m )

is a lo
al system of polar 
oordinates with the 
enter in pmε ⊂ Γmε .
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Auxiliary Propositions

Lemma 7

For the solution uε of the problem (2) the estimate

∫

Ω

|uε|
2dx 6 C7| ln ε|

−δ , 0 < δ < 2−
2

d
,

is valid.

Aleksandra Che
hkina Mos
ow, August 16, 2018

Homogenization of the Steklov Spe
tral Problem for the System of Elasti
ity 13/ 21



Auxiliary Propositions

General Method

Now we use the Oleinik �Iosi�an�Shamaev method to estimate the

eigenvalues. Let Hε and H0 be two separable Hilbert spa
es with

the s
alar produ
ts (·, ·)ε and (·, ·)0, respe
tively. Let Aε ∈ L(Hε)
and A0 ∈ L(H0) be linear operators. Let V be a linear subspa
e of

H0 su
h that {v : v = A0u, u ∈ H0} ⊂ V .

Let {µnε}
∞
n=1 and {µn0}

∞
n=1 be the sequen
es of the eigenvalues of

Aε and A0, respe
tively, with the 
lassi
al 
onvention of repeated

eigenvalues. Let {wn
ε }

∞
n=1 and ({wn

0 }
∞
n=1, respe
tively) be the


orresponding eigenfun
tions in Hε, whi
h are assumed to be

orthonormal (H0, respe
tively).
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Auxiliary Propositions

General Method

We assume that the following properties are satis�ed:

C1 There exists Rε ∈ L(H0,Hε) su
h that

(RεF ,RεF )
Hε

ε→0
−−−−−→κ0(F ,F )

H0
, for all F ∈ V and 
ertain

positive 
onstant κ0.

C2 The operators Aε and A0 are positive, 
ompa
t and

selfadjoint. Moreover, ‖Aε‖L(Hε) are bounded by a 
onstant,

independent of ε.

C3 ‖AεRεF − RεA0F‖
Hε

ε→0
−−−−−→ 0 for all F ∈ V .

C4 The family of operators Aε is uniformly 
ompa
t, i.e., for

any sequen
e F ε
in Hε su
h that supε ‖F

ε‖
Hε

is bounded by a


onstant independent of ε, we 
an extra
t a subsequen
e F ε′
,

that veri�es the following: ‖Aε
′F ε′ − Rε

′v0‖
H

ε
′
→ 0, as

ε′ → 0, for 
ertain v0 ∈ H0.
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Auxiliary Propositions

General Method

Then, for ea
h k , there exists a 
onstant C k
8 , independent of ε,

su
h that

|µkε − µk0 | 6 C k
8 sup

u∈N (µk
0
,A0),

‖u‖
H0

=1

‖AεRεu − RεA0u‖
Hε
, (3)

where N (µk0 ,A0) = {u ∈ H0,A0u = µk0u}. Moreover, if µk0 has

multipli
ity s (µk0 = µk+1
0 = · · · = µk+s−1

0 ), then for any w �

eigenfun
tion asso
iated with µk0 , with ‖w‖
H0

= 1 � there exists a

linear 
ombination w ε
of eigenfun
tions of Aε, {w

j
ε}

j=k+s−1
j=k

asso
iated with {µjε}
j=k+s−1
j=k su
h that

‖w ε − Rεw‖
Hε

6 C k
9 ‖AεRεw − RεA0w‖

Hε
,

where the 
onstant C k
9 is independent on ε.
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Main Result

De�ne the operator Aε : L2(∂Ω)
d → H1(Ω, γ1 ∪ γε)

d , setting

Aεg = uε
∣

∣

∂Ω
, where uε is the solution of the problem (2). The

operator A0 is the zero operator. Let

Hε = H0 = L2(∂Ω),V = H1(Ω, ∂Ω) and let Rε be an identi
al

operator in L2(∂Ω).
Let us verify the 
onditions C1�C4. The 
ondition C1 is ful�lled

automati
ally. It is easy to establish the positiveness,

self�adjointness and 
ompa
tness of the operators Aε. The norms

‖Aε‖L(Hε) are uniformly bounded with respe
t to ε by virtue of

Lemma 5. Here L(Hε) is the spa
e of linear operators on Hε.

In view of Lemma 7 the 
ondition C3 takes pla
e. If a sequen
e

{Aεfε} is bounded in H1(Ω, γ1 ∪ γε), therefore, it is 
ompa
t in

L2(Ω). Be
ause of Lemma 5 the 
ondition C4 is ful�lled.
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Main Result

Consider the spe
tral problem

Aεu
n
ε = µnεu

n
ε , µ

1
ε > µ2ε > · · · , n = 1, 2, . . .

It is obvious, that µnε =
1

λnε
, where λnε is the n-th eigenvalue of the

problem (1). Then formula (3) of Oleinik�Iosi�an�Shamaev method

gives us:

|µnε | 6 C10 sup
‖u‖H0=1

‖Aεu‖
Hε
, (4)

n = 1, 2, . . . .
Thus the next Theorem follows from (4) and Lemma 7:
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Main Result

Theorem

There exists su
h a 
onstant C independent of ε, that for

eigenvalues λnε of the problem (1), the estimate

λnε > C | ln ε|δ

is valid for su�
iently small ε, where

0 < δ < 2− 2
d
,Nε = O

(

| ln ε|
(

1− δ
2

)

d−1)
as ε→ 0.
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Thank you for your attention!
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