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The Domain

Let Q be a smooth domain in R, d > 2.

We suppose that the boundary 0Q2 = v; U4, UT.. I'. consists of
the sets ", m=1,..., N, the diameter of I'" is less then or
equals to €, and the distance between them is greater than or
equals to 2e, where ¢ is a positive small parameter.
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Problem setup

Consider the spectral problem

..8/ .
Le(u?) = 55 (aby3g) =0 in @, k=1.....d,

k
uf =0 on 71 U7, (1)

o(ul) = AU(X)%—L;;V,' =Nu"on T, n=12...

Here and throughout we assume the summation on the repeated

indices.
Here u? € (HY(Q,71U:))9, n=1,2,...
The set {A\2}, n=1,2,..., is the set of eigenvalues such that

)\é < )\g < < A2 < -+, where the eigenvalues repeat according
to their multiplicities.
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Problem setup

Al are matrices (d x d) with elements ak,, which are bounded
measurable functions, ak,(x) = ,k( x) = af.; (x),

saéiii < a(x)&ily < 22€kibui, 1,22 = const >0, x € Q,

where {{4;} are real symmetric matrices, v = (v1,...,vq4) is an
outward normal vector to the boundary 0%2.
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Problem setup

We study the limit behavior of eigenelements of problem (1), when

e tends to zero and N. = O(]In 5|(1_%)d_1),0 <3 <2—2, where
N is the number of '™ on the boundary. The space H'(Q,v1 U~.)
is defined as the completion of the functions from the space

C>(Q), vanishing in a neighborhood of 1 U~., with respect to the

norm
1

IVl = (/ (v + |Vv|2)dx>2

Q
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Auxiliary Propositions

Consider the boundary-value problem corresponding to spectral
problem (1). We have

L(us) =0 in Q,
u: =0 on U7, (2)
o(u:) =g(x) on T,

d
where g(x) € (Lz(aﬂ)) U = (Uz1,- .-, Ug) T and

o) = (La(0)ooo L) = S (A5,

X
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Auxiliary Propositions

Let Q, = {x : x € Q, p(x,09Q) < n}, where p(x,0Q) is the
distance between x and 0S).

For the functions u from the space H(£2,v1 U~.) the following

estimate
/uzdx< C1772/|Vu|2dx
Q

QU n

holds true, where the constant C; does not depend on &, 1 and wv.
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Auxiliary Propositions

For the function u from the space H'(Q,~1 U+.) the estimate

/uzdxg C2/|Vu|2dx,
Q

Q

is valid, where the constant C, does not depend on ¢ and u.
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Auxiliary Propositions

The next Theorem is connected with Korn's inequality for strains
and stresses.

Lemma 3 (Korn's type inequality)

For the function u(x) = (u*(x),...,u9(x))" from the space
(HY(2,7 U ’yg))d the inequality

8u 2
/Z|Vu\dx C3/Z B 8X,) dx <

7J_
d
ou' au
<G| Y alx ) o
q idkl=1

holds true, where C3, C4 are independent of u and e.
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Auxiliary Propositions

If the domain G is star—shaped with respect to the ball Q, then the
following Korn’s type inequality

D(u, G) < Cs(E(u, G) + D(u, Q))

is valid, where Cs is a constant, which does not depend on u, E
and D are the following functions:

8
D(u,Q) = /Z\Vu|dx uQ)_/Z OZ 8X 2dx
j i

ij=1
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Auxiliary Propositions

The solutions u. of the problem (2) are uniformly bounded with
respect to € in H(Q).

Now define the cut-off function 1 (s) € C*°(R) such that ¢(s) =0,
when s € [—00, 1], ¥(s) = 1, when
s>1+a,0<0<%,0<1/1(5)<1.
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Auxiliary Propositions

For the solutions u. of the problem (2) the estimate

/|Vu5| Y2 (x)dx < GglIn e]°

Q

is valid, where the constant Cs does not depend on ¢

Ye(x) = H YI(x), 7 (x) = ¥ (fmk), where (i, 0, ..., 0871

is a local system of polar coordinates with the center in p” C I'?.
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Auxiliary Propositions

For the solution u. of the problem (2) the estimate

2
/|u5\2dx < Gllngl™, 0<5 <2~ 7
Q

is valid.
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Auxiliary Propositions
General Method

Now we use the Oleinik —losifian—-Shamaev method to estimate the
eigenvalues. Let H. and Hp be two separable Hilbert spaces with
the scalar products (-, ) and (-, -)o, respectively. Let Ac € L(H,)
and Ag € L(Hp) be linear operators. Let V be a linear subspace of
Hp such that {v : v = Agu, v € Hp} C V.

Let {2152, and {ug}52; be the sequences of the eigenvalues of
A, and Ao, respectlvely, with the classical convention of repeated
eigenvalues. Let {w/}°°; and ({wg}52,, respectively) be the
corresponding elgenfunctlons in H., which are assumed to be
orthonormal (Hp, respectively).
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Auxiliary Propositions
General Method

We assume that the following properties are satisfied:
m C1 There exists R. € L(Hp, He) such that

(ReF, ReF)p, — =2 30(F, F)p,, for all F € V and certain

positive constant .

m C2 The operators A. and Ag are positive, compact and
selfadjoint. Moreover, ||Ac|z(n,) are bounded by a constant,
independent of .

m C3 |A.R-F — R.AoF||n, ——>0forall F e V.

m C4 The family of operators A, is uniformly compact, i.e., for
any sequence F¢ in H. such that sup, ||F¢| 4, is bounded by a
constant independent of ¢, we can extract a subsequence F',
that verifies the following: || Acr F' — R./ VO, — 0, as
e/ — 0, for certain v € Hy.
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Auxiliary Propositions
General Method

Then, for each k, there exists a constant Cé‘, independent of ¢,

such that
uf = pgl < G& sup [|AcReu — ReAgul|, , (3)
UEN(H(’)‘,A()),
lull g =1
where N\ H A u Moreover, if 1k has
mu t|p||C|ty @ w? 9.2 -k—+/§gy; then for any #/0—

eigenfunction assoaated with &, with ||w||g, = 1 — there exists a
linear combination w* of eigenfunctions of A, {W]}J ksl

associated with {,ug}j-zlfs ! such that
[w® = Rew ||, < Ct_;(HAsReW — RAow||H,

where the constant Cé‘ is independent on ¢.
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Main Result

Define the operator A, : Lp(99)9 — HY(Q,v1 U~.)Y, setting
A.g = UE{BQ’ where u, is the solution of the problem (2). The
operator Ay is the zero operator. Let

H. = Hy = L»(09), V = HY(Q,09) and let R. be an identical
operator in Lo(9%).

Let us verify the conditions C1-C4. The condition C1 is fulfilled
automatically. It is easy to establish the positiveness,
self-adjointness and compactness of the operators A.. The norms
|Acl£(H.) are uniformly bounded with respect to € by virtue of
Lemma 5. Here L(H.) is the space of linear operators on H;.
In view of Lemma 7 the condition C3 takes place. If a sequence
{A.f.} is bounded in H*(,v1 U~.), therefore, it is compact in
L»(R2). Because of Lemma 5 the condition C4 is fulfilled.

Aleksandra Chechkina Moscow, August 16, 2018

Homogenization of the Steklov Spectral Problem for the System of Elasticity 17/ 21



Main Result

Consider the spectral problem

1 2
Acul =plul ut>p2 >, n=12...

. . 1 . .
It is obvious, that pu = —, where A7 is the n-th eigenvalue of the

An’
problem (1). Then formula (3) of Oleinik—losifian-Shamaev method
gives us:
el < Cro sup [|Aculln,, (4)
ullHy=1
n=12....

Thus the next Theorem follows from (4) and Lemma 7:
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Main Result

Theorem

There exists such a constant C independent of ¢, that for
eigenvalues A7 of the problem (1), the estimate

A" > Clinel®

is valid for sufficiently small &, where
)
2

0<5<2—%,N5:O(||n€|(1_ )d_l) as ¢ — 0.
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Thank you for your attention!
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