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Introduction

@ Many processes in real
applications have multiscale
nature.

@ In these physical processes, the
transport of the material can be

described by the
convection-diffusion equation.

@ Numerical solutions for flow and
transport equations are expensive
and require resolving fine-scale
details.

@ We design of a general multiscale
finite element framework that
takes advantage of the effective
low dimensional solution space for
multiscale problems.
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Introduction

@ Among multiscale problems, the
problems in perforated domains
are of great interest to many
applications.

@ The main characteristics of these
problems is that the underlying
processes occur in multiscale
domains where the geometry of
the domain has multiple scales.

@ The solution techniques require
high resolution. In particular, the
discretization needs to honor the
irregular boundaries of
perforations. This gives rise to a
fine-scale problems with many
degrees of freedom which can be
very expensive to solve.
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Mathematical model

Convection-diffusion equation

%—div(ch)+ch:f, xet>0

where d - diffusive transfer coefficient, u - the velocity of fluid flow in a
porous medium, f - source term.
Stokes equations

uAu —Vp=0, x¢€QF
divu=0, z€Q°

where p - viscosity, p - pressure.
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Mathematical model

Convection-diffusion equation

Oc ,

i div(dVe) +uVe=f, xe€Q,t>0

where d - diffusive transfer coefficient, u - the velocity of fluid flow in a
porous medium, f - source term.

We will use mixed formulation for the transport equation and write
formulation associated to flux. Let ¢ = —dVc¢ be the flux then we have

following mixed formulation for flux and concentration (g, ¢)

dlq+Ve=0, zeO

— +divg—dtug=f, zef
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Fine-grid approximation

Space discretization of the mixed transport equations
The variational formulation of the transport equation in the mixed
formulation reads: find ¢ € Vi and ¢ € Q° such that

/dl(q, z)daz+/ div z¢"dx = 0
Q Q

Cn—l—l — "
/—rdx+/divq7“dx—/d1(ur,q)da::/frda:
Q T Q Q Q

Space discretization of the Stokes equations

,LL/Vqu—/pdivvd:L‘:/fvdx
Q Q Q

/ divugdxr = 0
Q
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Coarse grid approximation

Offline computations: T (Coarse Grid) T
e Generate a coarse grid Ty T
e Construct of snapshot space = / Ky
e For each coarse region Coarse
compute local snapshots and K neighborhood
reduce the dimension of local

snapshot space using a

spectral decomposition T (Coarse Grid)

Online computations

e Construct multiscale basis

functions by the solution of K |~

the local eigenvalue problem in | | | -

each local domain w;. Coarse
Element

@ Construct and solve of the
coarse grid approximation
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Coarse grid approximation

Let ey be the set of all edges of the coarse grid and Ng be the total
number of edges, w; is the local domain, where i = 1,..., Ny and Ny is
the number of coarse grid nodes. A local domain w; is obtained by the
combining all the coarse cells around one facets of the coarse grid. We
solve following problem on the local domain w that correspond to the

coarse-grid edge F € £ : find (p;n) € V¥ x QF such that
/ d~ ¢ vdr — / ndivedr = 0,v € V¥,
Q Q

/TV°¢jd$:/gTd£U,TEQ(;Z
Q Q

with boundary condition
¢;-n =0 on dw

The constant g is chosen by compatibility condition, that is,
1
9= 117 I ®; - nds
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Coarse grid approximation

We solve following problem on the local domain w that correspond to
the coarse-grid edge E € £ : find (pjm) € V¥ x QF such that

/ d~pvdr — / ndivuodr = 0,v € V¥,
Q Q

/rv-gbjda::/grd:c,reQﬁ
Q Q

with boundary condition
¢;i-n=0 on dw

On the coarse edge we set the additional boundary condition
¢;j-n=2909; onk

where j =1, ..., L,,. L, is the number of fine grid edges. Here J; is a
piecewise constant function defined on F that has value 1 on e; and
value 0 on the order fine-grid edges. The constant g is chosen by
compatibility condition, that is, g = ﬁ | @ - nds
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Coarse grid approximation

The collection of the solutions of above local problems generated the
snapshot space in w

R, = [¢1,...01,,]

We consider following local spectral problem in the snapshot space
A = NeSuthy,
where A, = RWAWRZ;,F = RWSWRZ; and
A = [a50)s 050 = (B 0) = [ K7 (0 )6 ),
S = ) S = 5O 0n) = [ K omonda + [ V-6,V - nd
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Coarse grid approximation

To construct a multiscale space V% we select the first L, eigenvectors
o1, P2, ..., ¢y, corresponding to the first M, smallest eigenvalues

Al < A2 < ... < A\,. We can solve eigenvalue problem for the matrix S”
and choose the largest eigenvalues and take corresponding eigenvectors
as multiscale basis functions. The coarse-scale system can be
calculated by projecting the fine-scale matrices onto coarse grid with
global projection matrix assembled from the calculated multiscale basis
functions

R = (R17R27 ...,RNU)TyRi — [ ?i?qb%? 7¢(?:d]7

where R; is the local projection matrix. Using the global projection
matrix R, we can define the coarse-scale system

Awu,=F., A.=RAR! F.=RF

After calculation of the coarse-scale solution u., we can recover the
multiscale solution.
Ums = R u,
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Numerical Results

N o
OO
@ The computational mesh contains : R
14648 vertices, 43087 facets and 28410 NEE R
cells. 2NN NG
e Parameters: =1, dt = 0.1, NN
Tinar = 1.5, d = 0.03 and source terms

(see left picture in Figure 1, where
blue block corresponds to f = —1 and
orange block corresponds to f =1,
and f = 0 elsewhere in the domain).

@ Initial condition ¢ = 0

Valentin Alekseev ( Multiscale mNumerical simulation of the transport Moscow. 2 3/ 18



Numerical results
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The distribution of the X and Y components of the velocity and
pressure(uy - top, u, - left, p - right)
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Numerical results

0008
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The distribution of the concentration at t=0.1sec., t=0.75 sec., t=1.5

sec. respectively(top:fine-scale solution and bottom:multiscale solution
for d=0.03).
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Numerical results

Multiscale
X uvY
0.00853 Scon 0.00839Eum
Eom :0.004
EO EE)DEM
—0.007‘?5—E —O.OOSSS—E-"“
Fine-scale

The distribution of the flux at t=1.5 sec. for d=0.03.
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Numerical results

M DOF. | e (%) | e (B e, (B[ e, (%)
1 320 10.024 27.7091 6.65845 0.868823
2 540 7.33061 27.0764 6.65333 0.868823
3 760 6.03289 27.0647 6.65083 0.701797
4 980 5.99444 27.0618 6.65082 0.726132
1 320 5.15484 0.844318 7.95336 0.031527
2 540 0.60391 0.7261 7.9223 0.006332
3 760 0.22771 0.72225 7.92101 0.005091
4 980 0.19374 0.721922 7.92099 0.005104
1 320 5.44966 0.0148155 | 8.71128 0.194684
2 540 0.440545 | 0.00775466 | 8.60703 0.0013234
3 760 0.0731469 | 0.00739732 | 8.60553 0.0013234
4 980 0.0380817 | 0.00736612 | 8.60552 | 0.000262544

Relative errors for flux and concentration with different number of multiscale

basis functions for d = 0.03, d = 0.3 and d = 3.0 sequentially for t = 1.5
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Conclusion

@ We considered a multiscale model reduction approach based on
mixed GMsFEM for the convection-diffusion equation in
perforated domains.

@ The coarse scale discretization is based on a mixed formulation,
which gives the mass conservation property.

@ We presented numerical results to demonstrate a robustness of
Generalized multiscale finite element method .

@ Our results show that the presented method demonstrate accuracy
for transport problem.

@ In future we will consider construction of a multiscale basis
functions with adding convection part to local problem.
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