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The talk is a review on the applications of the homogenization theory in
multiscale mathematical modeling in biology with an accent at [2],[3], [12],
[13], [11]. A large spectrum of biophysical models deals with viscous flows in
porous media and in thin structures: blood flow in a network of vessels, blood
flow through a fibrin binded RBC, network of capillaries (see [4] for rheol-
ogy). In these models the standard homogenization techniques for the flows
in porous medium can be applied. The most interesting problems concern
the justified interface conditions between a Newtonian or non-Newtonian
flow in some part of the domain and filtration in the porous part (see[10]
). In particular in the Robin type junction conditions on the pressure was
derived for the Stokes equation in a domain with periodic set of thin chan-
nels ([2]). On the other hand, modeling of the blood flow in a vessel needs
to take into consideration the fluid-elastic (or viscoelastic) wall interaction,
where the wall has a heterogeneous structure and can be homogenized (see
[13]). Also the light absorption in a tissue is very different within blood
vessels and out of vessels. Namely, it is much higher in vessels. This leads
to a homogenization problem with contrasting coefficients, and the classical
homogenization theory has limitations of applicability ( [12]). Finally, com-
plete asymptotic expansion of a solution was constructed in the case when
classical homogenization doesn’t work( [3]). Modeling of wave propagation
in the lungs via the homogenization is presented in [1], while for waves in
the bones we refer to [5],[14]. An important direction is related to the mul-
tiscale modeling in electrophysiology with application to the heart motion.
The main model there is the so called cable equation and it corresponds to
a set of cells having conductive liquid part and weakly conductive but thin
membrane. These problems were studied as formally [7] so that rigorously by
means of Γ-convergence and two-scale convergence [15], [9],[6], [8]. Finally
an important class of homogenization problems appears in application to the
behaviour of cells, their nutrition, growth, death etc. Often the cells are
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modeled by discrete points, and so we deal with some differential equations
with Dirac-like functions as the coefficients. One of such equations, diffusion
discrete absorption (DDA) equation was homogenized in [11]. Currently this
1D equation is generalized for multiple dimensions. The work is supported
by the Russian Science Foundation, grant number 14-11-00306, executed by
National Research University Moscow Power Engineering Institute.
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