Homogenization of the Steklov problem for elliptic equation

Aleksandra Chechkina

(chechkina@gmail.com, Lomonosov Moscow State University, Russia)

Aperiodic case

Assume that Ω is a domain in \mathbb{R}^2 lying in upper half-plane. Its boundary $\partial\Omega$ is piecewise smooth and consists of two parts: $\partial\Omega = \Gamma_1 \cup \Gamma_2$. The part Γ_1 is a segment $\left[-\frac{1}{2};\frac{1}{2}\right]$ on the x-axis, while smooth part Γ_2 coincides with the straight lines $x_1 = -\frac{1}{2}$ and $x_1 = \frac{1}{2}$ in the neighborhood of points $\left(-\frac{1}{2},0\right)$ and $\left(\frac{1}{2},0\right)$ respectively. Also assume that Γ_1 consists of alternating parts γ_{ε}^i , Γ_{ε}^i , and

$$\gamma_{\varepsilon} = \bigcup_{i=1}^{N_{\varepsilon}} \gamma_{\varepsilon}^{i}, \qquad \Gamma_{\varepsilon} = \bigcup_{i=1}^{N_{\varepsilon}} \Gamma_{\varepsilon}^{i}, \qquad \Gamma_{1} = \gamma_{\varepsilon} \cup \Gamma_{\varepsilon}.$$

Suppose that for any i the following conditions are satisfied:

 $C^{-}\varepsilon \leq |\Gamma_{\varepsilon}^{i}| \leq C^{+}\varepsilon, \ C^{-}\varepsilon \leq |\gamma_{\varepsilon}^{i}| \leq C^{+}\varepsilon, \ \text{where} \ 0 < C^{-} < C^{+} < +\infty.$

Hereinafter ε is a positive small parameter.

Consider the following spectral problem of the Steklov type for the second order elliptic equation:

$$\begin{cases} L[u_{\varepsilon}] \equiv \sum_{i,j=1}^{2} \frac{\partial}{\partial x_{j}} \left(a^{ij}(x) \frac{\partial u_{\varepsilon}}{\partial x_{i}} \right) = 0 & \text{in} \quad \Omega, \\ u_{\varepsilon} = 0 & \text{on} \quad \Gamma_{2} \cup \Gamma_{\varepsilon}, \\ \frac{\partial u_{\varepsilon}}{\partial \vartheta} \equiv \sum_{i,j=1}^{2} a^{ij}(x) \frac{\partial u_{\varepsilon}}{\partial x_{i}} \nu_{j} = \lambda_{\varepsilon} u_{\varepsilon} & \text{on} \quad \gamma_{\varepsilon}. \end{cases}$$
(1)

Here $\nu = (\nu_1, \nu_2)^t$ is a unit outer normal to $\partial\Omega$. The coefficients $a^{ij}(x)$ are bounded measurable functions in Ω . The matrix $(a^{ij}(x))$ is positively definite, i.e.

$$\varkappa_1 |\xi|^2 \le \sum_{i,j=1}^2 a^{ij}(x)\xi_i\xi_j \le \varkappa_2 |\xi|^2, \quad \text{where} \quad \varkappa_1 > 0, \varkappa_2 > 0.$$

Definition 1. A function $u_{\varepsilon} \in W_2^1(\Omega, \Gamma_2 \cup \Gamma_{\varepsilon}) \setminus \{0\}$ is called the eigenfunction of the problem (1) corresponding to the eigenvalue λ_{ε} , if for any function $v \in W_2^1(\Omega, \Gamma_2 \cup \Gamma_{\varepsilon})$ the following integral identity:

$$\sum_{i,j=1}^{2} \int_{\Omega} a^{ij} \frac{\partial u_{\varepsilon}}{\partial x_{i}} \frac{\partial v}{\partial x_{j}} \, dx = \lambda_{\varepsilon} \int_{\gamma_{\varepsilon}} u_{\varepsilon} \, v \, ds.$$
⁽²⁾

holds true.

Theorem 1. The first eigenvalue of the problem (1) is of order $\frac{1}{\varepsilon}$, i.e. it satisfies the following relation:

$$\frac{K_1}{\varepsilon} \le \lambda_{\varepsilon}^1 \le \frac{K_2}{\varepsilon}$$

where K_1 and K_2 are positive constants. Moreover the first eigenfunction u_{ε}^1 converges in the norm $L_2(\Omega)$ and weakly converges in $W_2^1(\Omega)$ to zero.

Periodic case

Let now Ω be a domain in \mathbb{R}^2 . $\partial \Omega$ is a simple smooth closed contour of the length 1. In the small neighborhood of $\partial \Omega$ the local coordinates (s, τ) are introduced.

 Γ^{ε} — is an arbitrary non-empty closed one-dimensional set depending on $\varepsilon \in (0, 1]$ and lying in the interval $\Sigma = \{\xi = (\xi_1, \xi_2) \in \mathbb{R}^2 | 0 < \xi_1 < 1, \xi_2 = 0\}.$

It is assumed that $mes \Gamma^{\varepsilon} = O(\varepsilon)$.

We write Γ_1^{ε} for the set formed by all integer shifts of Γ^{ε} along the axis $\xi_2 = 0$ and let Γ_D^{ε} be the image of Γ_1^{ε} under the mapping $s = \delta \xi_1, \tau = \delta \xi_2$. $\Gamma_N^{\varepsilon} = \partial \Omega \setminus \Gamma_D^{\varepsilon}, \varepsilon^{-1} \in \mathbb{N}$ for small ε ; let δ depend on ε in such way that $\delta(\varepsilon) \to 0$ as $\varepsilon \to 0$.

 $B = \{\xi \in \mathbb{R}^2 | \, 0 < \xi_1 < 1, \xi_2 < 0\}$

Define the space $H_{1-\text{per}}(B, \Gamma^{\varepsilon})$ as a completion with respect to the norm

$$\left\|v\right\|_{1} = \left(\iint_{B} |\nabla_{\xi}v|^{2}d\xi + \int_{\Sigma} v^{2}d\xi_{1}\right)^{\frac{1}{2}}$$

of the set of 1-periodic in ξ_1 functions in $C^{\infty}(\overline{B})$ which remain smooth after their 1-periodic extension with respect to ξ_1 , vanish in a neighbourhood of Γ^{ε} and possess a finite Dirichlet integral over B.

Let

$$\theta_{\varepsilon} = \inf_{v \in H_{1\text{-per}}(B, \Gamma^{\varepsilon}) \backslash \{0\}} \frac{\displaystyle \iint_{B} |\nabla_{\xi} v|^2 d\xi}{\displaystyle \int_{\Sigma} v^2 d\xi_1},$$

We assume that there is a finite or infinite limit

$$\lim_{\varepsilon \to 0} \frac{\theta_{\varepsilon}}{\delta(\varepsilon)} = p \in [0, +\infty].$$
(3)

Suppose that the condition (3) holds. Consider the following eigenvalue problems:

$$\begin{cases} \Delta u_{\varepsilon}^{k} = 0 & \text{in } \Omega, \\ u_{\varepsilon}^{k} = 0 & \text{on } \Gamma_{D}^{\varepsilon}, \\ \frac{\partial u_{\varepsilon}^{k}}{\partial \tau} = \lambda_{\varepsilon}^{k} u_{\varepsilon}^{k} & \text{on } \Gamma_{N}^{\varepsilon}. \end{cases}$$

$$\Delta u_{0}^{k} = 0 & \text{in } \Omega, \\ u_{0}^{k} = 0 & \text{on } \partial\Omega, \text{ as } p = +\infty \qquad (5)$$

$$\frac{\partial u_{0}^{k}}{\partial \tau} + p u_{0}^{k} = \lambda_{0}^{k} u_{0}^{k} & \text{on } \partial\Omega, \text{ as } p < +\infty. \end{cases}$$

Theorem 2. 1. Suppose that the condition (3) holds. Then there is a con-

stant $K_3(k)$, independent of ε such that for sufficiently small ε

$$\begin{aligned} |\lambda_{\varepsilon}^{k} - \lambda_{0}^{k}| \leqslant K_{3}(k) \left(\sqrt{\theta_{\varepsilon}} + \left|\frac{\theta_{\varepsilon}}{\delta} - p\right|\right), & \text{if } p < \infty, \\ \lambda_{\varepsilon}^{k} \to +\infty, & \text{if } p = \infty. \end{aligned}$$

2. Suppose that the multiplicity of the eigenvalue λ_0^{k+1} of the problem (5) is equal to $m: \lambda_0^{k+1} = \cdots = \lambda_0^{k+m}$. Then for every eigenfunction of (5) with eigenvalue λ_0^{k+1} there is a linear combination $\overline{u}_{\varepsilon}$ of eigenfunctions $u_{\varepsilon}^{k+1}, \ldots, u_{\varepsilon}^{k+m}$ of the problem (4) with eigenvalues $\lambda_{\varepsilon}^{k+1}, \ldots, \lambda_{\varepsilon}^{k+m}$ respectively such that for sufficiently small ε

$$\|\overline{u}_{\varepsilon} - u_0\|_{L_2(\Omega)} \leq K_4(k) \left(\sqrt{\theta_{\varepsilon}} + \left|\frac{\theta_{\varepsilon}}{\delta} - p\right|\right), \quad \text{if } p < \infty,$$

where the constant $K_4(k)$ does not depend on ε .

References

- Chechkina A.G., Sadovnichy V.A. Degeneration of Steklov-type boundary conditions in one spectral homogenization problem *Eurasian Mathematical Journal*, 6 (3, 2015), 13–29.
- [2] Chechkina A. Homogenization of spectral problems with singular perturbation of Steklov condition. *Izvestiya. Mathematics*, **81** (1, 2017), 199–236.