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Aperiodic case

Assume that  is a domain in R? lying in upper half-plane. Its boundary
0f) is piecewise smooth and consists of two parts: 92 = I'; UT's. The part
['; is a segment [—%; %} on the x-axis, while smooth part I's coincides with
the straight lines x; = —% and z, = % in the neighborhood of points (—%, 0)
and (%, 0) respectively. Also assume that I'; consists of alternating parts 7.,

I, and
v=Jy T.=JrL TIi=1Ul.
Suppose that for any ¢ the following conditions are satisfied:
Ce<[I<Che Ce<|y| <O where 0 <C™ < C" < +o0.

Hereinafter ¢ is a positive small parameter.
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Consider the following spectral problem of the Steklov type for the second
order elliptic equation:
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Here v = (11, 15)" is a unit outer normal to 9. The coefficients a”(z) are

bounded measurable functions in Q. The matrix (a” (z)) is positively definite,
le.
2
s |€)? < Z a”’(2)6&; < m|€]?, where ¢ > 0,30 > 0.
ij=1

Definition 1. A function u. € W} (Q,To UT.) \ {0} is called the eigenfunction
of the problem (1) corresponding to the eigenvalue A, if for any function v €
WH(Q,To UT.) the following integral identity:
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holds true.
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Theorem 1. The first eigenvalue of the problem (1) is of order —, i.e. it satisfies
€

the following relation:
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where K1 and Ko are positive constants. Moreover the first eigenfunction ul con-

verges in the norm Lo(Q) and weakly converges in W4 (§2) to zero.

Periodic case

Let now € be a domain in R2. 952 is a simple smooth closed contour of
the length 1. In the small neighborhood of 02 the local coordinates (s, 7)
are introduced.

['* — is an arbitrary non-empty closed one-dimensional set depending on
e € (0,1] and lying in the interval ¥ = {£ = (£1,&) € R*[0 < & < 1,& = 0}.

It is assumed that mesT< = O(e).

We write I'{ for the set formed by all integer shifts of I'* along the axis
& = 0 and let I'}, be the image of I'] under the mapping s = 6&;,7 = 0&s.
Iy, = 00\ T5, e! € N for small €; let § depend on ¢ in such way that
d(e) > 0ase—0.

B={¢eR})0<& <1,& <0}

Define the space Hy per(B,1¢) as a completion with respect to the norm

ol = ( [[ 1Wea + [ o2ae)’
B P

of the set of 1-periodic in & functions in C*°(B) which remain smooth after
their 1-periodic extension with respect to &, vanish in a neighbourhood of
['* and possess a finite Dirichlet integral over B.
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We assume that there is a finite or infinite limit
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=p € [0, +o0].
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Suppose that the condition (3) holds. Consider the following eigenvalue

problems:

Aub =0

ub =0

Ouf — A

or °c
Auf =0 in
uk =0 on
Ougy k k, k
a5 +pug = A\guy on

in €,
on I,
on I'%.
Q,

o), as p=+o0

0, as p< +oo.
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Theorem 2. 1. Suppose that the condition (3) holds. Then there is a con-



stant K3(k), independant of € such that for sufficiently small e

M&mm<mw(¢é+

0. ,
——pD, if p<oo,
)

)\f—>+oo, if p=oc.

2. Suppose that the multiplicity of the eigenvalue A\j™ of the problem (5)
is equal to m: A\ = - = XY™ Then for every eigenfunction of (5) with
ergenvalue /\’gJrl there is a linear combination . of eigenfunctions uf™ ... uFtm™
of the problem (4) with eigenvalues N¥1, ... N+™ respectively such that for

sufficiently small €

7 = ol 0y < Koh) (V04

%—pD, if p < oo,

where the constant K,(k) does not depend on ¢.
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