
1

Intel® Distribution for Python* и Intel®
Performance Libraries

Motivation

2

* L.Prechelt, An empirical comparison of seven programming languages, IEEE Computer, 2000, Vol. 33, Issue 10, pp. 23-29
** RedMonk - D.Berkholz, Programming languages ranked by expressiveness

3

Adoption of Python

 continues to grow
among domain
specialists and
developers for its
productivity benefits

* Source: CodeEval, Feb 2015

4

5

Intel® Xeon Phi™ Product Family

Configuration Info: apt/atlas: installed with apt-get, Ubuntu 16.10, python 3.5.2, numpy 1.11.0, scipy 0.17.0; pip/openblas: installed with pip, Ubuntu 16.10, python 3.5.2, numpy 1.11.1, scipy 0.18.0; Intel Python: Intel Distribution for Python 2017;.
Hardware: Xeon: Intel Xeon CPU E5-2698 v3 @ 2.30 GHz (2 sockets, 16 cores each, HT=off), 64 GB of RAM, 8 DIMMS of 8GB@2133MHz; Xeon Phi: Intel Intel® Xeon Phi™ CPU 7210 1.30 GHz, 96 GB of RAM, 6 DIMMS of 16GB@1200MHz

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components,
software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets
covered by this notice. Notice revision #20110804 .

New AVX512 instructions based product

Out-of-the-box Performance with Intel Distribution for Python

Intel® Xeon® Processors

Mature AVX2 instructions based product

6

Highlights: Intel® Distribution for Python* 2017
Focus on advancing Python performance closer to native speeds

• Prebuilt, accelerated Distribution for numerical & scientific computing,
data analytics, HPC. Optimized for IA

• Drop in replacement for your existing Python. No code changes required

Easy, out-of-the-box access
to high performance Python

• Accelerated NumPy/SciPy/scikit-learn with Intel® Math Kernel Library

• Data analytics with pyDAAL, Enhanced thread scheduling with TBB,
Jupyter* notebook interface, Numba, Cython

• Scale easily with optimized mpi4py and Jupyter notebooks

Drive performance with
multiple optimization

techniques

• Distribution and individual optimized packages available through conda
and Anaconda Cloud

• Optimizations upstreamed back to main Python trunk

Faster access to latest
optimizations for Intel

architecture

What's in Intel® Distribution for Python*?
Scipy-stack + selected BigData/ML/HPC packages

7

Math/Compute
• Numpy
• Scipy
• pyDAAL
• Scikit-learn
• Numexpr
• Sympy
• Mpmath

Parallelism/Performance
• TBB
• Mpi4py
• Numba
• Cython
• Pyzmq
• Distarray
• Pandas
• Pytables
• H5py

Productivity
• Conda
• Pip
• Jupyter
• Notebook
• Matplotlib
• Nose/pytest/mock

Misc

• Python 2.7/3.5
• Jinja2

• Pyyaml
• Tornado

• Llvmlite
• Six

• MarkupSafe
• Pytz

• Dateutil
…

Intel MKL
IPP

Intel DAAL
Intel Compiler

Intel TBB
Intel MPI

Intel Compiler

Powered by

Scikit-Learn* optimizations with Intel® MKL

0x

1x

2x

3x

4x

5x

6x

7x

8x

9x

Approximate neighbors Fast K-means GLM GLM net LASSO Lasso path Least angle regression,
OpenMP

Non-negative matrix
factorization

Regression by SGD Sampling without
replacement

SVD

Speedups of Scikit-Learn Benchmarks
Intel® Distribution for Python* 2017 Update 1 vs. system Python & NumPy/Scikit-Learn

System info: 32x Intel® Xeon® CPU E5-2698 v3 @ 2.30GHz, disabled HT, 64GB RAM; Intel® Distribution for Python* 2017 Gold; Intel® MKL 2017.0.0; Ubuntu 14.04.4 LTS; Numpy 1.11.1; scikit-learn 0.17.1. See Optimization Notice.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. * Other brands
and names are the property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804 .

8

Intel® DAAL: Heterogeneous Analytics

• Targets both data centers (Intel® Xeon® and Intel® Xeon Phi™) and edge-devices (Intel® Atom)

• Perform analysis close to data source (sensor/client/server) to optimize response latency, decrease
network bandwidth utilization, and maximize security

• Offload data to server/cluster for complex and large-scale analytics

(De-)Compression
(De-)Serialization

PCA
Statistical moments
Quantiles
Variance matrix
QR, SVD, Cholesky
Apriori
Outlier detection

Regression
• Linear
• Ridge

Classification
• Naïve Bayes
• SVM
• Classifier boosting
• kNN

Clustering
• Kmeans
• EM GMM

Collaborative filtering
• ALS

Neural Networks

Pre-processing Transformation Analysis Modeling Decision Making

Sc
ie

n
ti

fi
c/

En
gi

n
ee

ri
n

g

W
eb

/S
o

ci
al

B
u

si
n

es
s

Validation

Available also in open source:
https://software.intel.com/en-us/articles/opendaal

Performance Example : Read vs. Compute

• Algorithm: SVM Classification with RBF kernel

• Training dataset: CSV file (PCA-preprocessed MNIST, 40
principal components) n=42000, p=40

• Testing dataset: CSV file (PCA-preprocessed MNIST, 40
principal components) n=28000, p=40

System Info: Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz, 504GB, 2x24 cores, HT=on, OS RH7.2 x86_64, Intel
Distribution for Python 2017 Update 1 (Python 3.5)

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in
fully evaluating your contemplated purchases, including the performance of that product when combined
with other products. * Other brands and names are the property of their respective owners. Benchmark
Source: Intel Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include
SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.
Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please
refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice. Notice revision #20110804 .

0

5

10

15

20

25

Scikit-Learn, Pandas pyDAAL

Training (sec)

Read Training Dataset (incl. labels) Training Compute

0

5

10

15

20

25

Scikit-Learn, Pandas pyDAAL

Prediction (sec)

Read Test Dataset Prediction Compute

2.2x
66x Balanced

read and
compute

60% faster
CSV read

10

Intel® TBB: parallelism orchestration in Python ecosystem

Intel® TBB runtime

Intel® MKL

Numpy Scipy

Intel®
DAAL

PyDAAL

Intel® TBB module
for Python

Joblib Dask
Thread
Pool

Numba

11

> python -m TBB application.py
Application

Component 1

Component N

Subcomponent 1

Subcomponent 2

Subcomponent K

Subcomponent 1

Subcomponent M

Subcomponent
1

Subcomponent
1

Subcomponent
1

Subcomponent
1

Subcomponent
1

Subcomponent
1

Subcomponent
1

Subcomponent
1

• Software components are built from smaller ones

• If each component is threaded there can be too much!

• Intel TBB dynamically balances thread loads and effectively manages
oversubscription

12

Collaborative Filtering
• Processes users’ past behavior, their activities and ratings

• Predicts, what user might want to buy depending on his/her preferences

13

Training: Profiling pure python

Configuration Info: - Versions: Red Hat Enterprise Linux* built Python*: Python 2.7.5 (default, Feb 11 2014), NumPy 1.7.1, SciPy 0.12.1, multiprocessing 0.70a1 built with gcc 4.8.2; Hardware:
24 CPUs (HT ON), 2 Sockets (6 cores/socket), 2 NUMA nodes, Intel(R) Xeon(R) X5680@3.33GHz, RAM 24GB, Operating System: Red Hat Enterprise Linux Server release 7.0 (Maipo)

Items similarity assessment
(similarity matrix computation)
is the main hotspot

14

Training: Profiling pure Python

Configuration Info: - Versions: Red Hat Enterprise Linux* built Python*: Python 2.7.5 (default, Feb 11 2014), NumPy 1.7.1, SciPy 0.12.1, multiprocessing 0.70a1 built with gcc 4.8.2; Hardware:
24 CPUs (HT ON), 2 Sockets (6 cores/socket), 2 NUMA nodes, Intel(R) Xeon(R) X5680@3.33GHz, RAM 24GB, Operating System: Red Hat Enterprise Linux Server release 7.0 (Maipo)

This loop is major bottleneck.
Use appropriate technologies
(NumPy/SciPy/Scikit-Learn or
Cython/Numba) to accelerate

15

Training: Python + Numpy (MKL)
 Much faster!

 The most compute-
intensive part takes ~5%
of all the execution time

Configuration info: 96 CPUs (HT ON), 4 Sockets (12 cores/socket), 1 NUMA nodes, Intel(R) Xeon(R) E5-4657L v2@2.40GHz, RAM 64GB, Operating System: Fedora release 23 (Twenty Three)

16

Installing Intel® Distribution for Python* 2017

Download full installer from
https://software.intel.com/en-us/intel-distribution-for-python

 conda config --add channels intel

 conda create -n idp intelpython3_core python=3

 conda create -n idp intelpython3_full python=3

 source activate idp

or

Linux Windows

MacOS

Stand-alone installer and on anaconda.org/intel

17

18

