INTEL” DISTRIBUTION FORPYTHON* HINTEL"
PERFORMANC

01
0
0
11
o 0 0 o
5, 10
T 011010 0101—]0 i
001%) O‘ﬂvo’l
01%6lo, 0010, 01210
(0} 0901 B 1 1990 0
0~"19321s 401 519720
101 010110 1 061 oﬂﬁ%—IQI
07015 0008 910570
(o 00 o0 1501 O
007N Onlc- Mo, ot 108« 11010
0010 0 ooomoo1l 1500 0937”3 0] 0
10 011010 o 0o'0 05 £110100010100011101611001
g % 0; 0 0100 00”8 1
J 1 00100 0101 10 OS(]Q 02110 0300 ol 10‘O 00100 O‘Io?Dﬂw
9 0 0,010 10 0:105011110507:0 o Qo y
o O 0010 CJL\‘N‘I %, od, -»m»‘oo‘ 10 Toz oo 0010 o
10 il 080007 ‘010”010 10001150, 7 10 il
1 51 1010 i 51 O 1
1 000000001 i, e o 0000 1
0 1 0 i Jo!"
1 0011 10 01
100 O 010 019%11001])119]1(9)0000 10 1(())1%%1 01 0 01 O 0
110101001010110101001610 0010110 0110 01010101101‘]1 0) To
0 O o5 orogi109110107110001001011000101001 0108%3013?110‘2910 0] o
e, A 07105" 00T Q4 Ro1e18010:91015 105, T
0 00001 0 °O-| Isle, 1 00 10010 1"1139’110001010 o
1 1060{001161 0300099 T1o1065304 106‘0010:]]008011110&‘1110 1 116%,
OTQ 1 A 0“1 0"00 0. 01 O 0 00110 1 11
710075290 SETS IR PR o 007 101091700500, B L



MOTIVATION

LANGUAGE PROGRAMMING
EXPRESSIVENESS COMPLEXITY (HOURS)
(LOC/FEATURE) 5
4
4
3 3
2 2
, BB .
0 == 0
Python Java Python Java
E Prechelt* E Berkholz** E Prechelt*
* L.Prechelt, An empirical comparison of seven programming languages, IEEE Computer, 2000, Vol. 33, Issue 10, pp. 23-29
** RedMonk - D.Berkholz, Programming languages ranked by expressiveness




ADOPTION OF PYTHON

Most Popular Coding Languages of 2016

= continues to grow
among domain
specialists and
developers for its
productivity benefits




Workstation HPC/Big Data Cluster

NG/

ﬁ'i Development cost

Prototyping pevelopment cost Production

1. Pre-
processing

3-10x

and more

- Pie-
Processing

| Python*, ngh migration
Moexeer " costs

4. Model ; e 4. Model 3. Decision




UT-OF-THE-BOX PERFORMANCE WITH INTEL DISTRIBUTION FOR PYTHON

Mature AVX2 instructions based product New AVX512 instructions based product

Intel® Xeon® Processors Intel® Xeon Phi™ Product Family

Python* Performance as a Percentage of C/Intel® MKL for Python* Performance as a Percentage of C/Intel® MKL for
Intel® Xeon® Processors, 32 Core (Higher is Better) Intel® Xeon Phi™ Product Family, 64 Core (Higher is Better)
T 100%
90% 90%
80% 80%
70% 70%
60% 60%
50% 50%
40% 40%
30% 30%
20% 20%
10% 10% I
0% —_— —. - 0% -. . -l R - —_
dot lu det inv cholesky fft dot lu det inv cholesky fft
mapt/atlas mpip/openblas = Intel Python/MKL mapt/atlas mpip/openblas  mIntel Python/MKL

Configuration Info: apt/atlas: installed with apt-get, Ubuntu 16.10, python 3.5.2, numpy 1.11.0, scipy 0.17.0; pip/openblas: installed with pip, Ubuntu 16.10, python 3.5.2, numpy 1.11.1, scipy 0.18.0; Intel Python: Intel Distribution for Python 2017;.
Hardware: Xeon: Intel Xeon CPU E5-2698 v3 @ 2.30 GHz (2 sockets, 16 cores each, HT=0ff), 64 GB of RAM, 8 DIMMS of 8GB@2133MHz; Xeon Phi: Intel Intel® Xeon Phi™ CPU 7210 1.30 GHz, 96 GB of RAM, 6 DIMMS of 16GB@1200MHz

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components,
software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets
covered by this notice. Notice revision #20110804 .




HIGHLIGHTS: INTEL™ DISTRIBUTION FOR PYTHON* 2017

FOCUS ON ADVANCING PYTHON PERFORMANCE CLOSER TO NATIVE SPEEDS

¢ Prebuilt, accelerated Distribution for numerical & scientific computing,
data analytics, HPC. Optimized for IA

Easy, out-of-the-box access
to high performance Python

¢ Drop in replacement for your existing Python. No code changes required

. . . . Tra . ® .
Drive performance with Accelerated NumPy/SciPy/scikit-learn with Intel® Math Kernel Library

multiple optimization ¢ Data analytics with pyDAAL, Enhanced thread scheduling with TBB,

Jupyter* notebook interface, Numba, Cython

tEChnIC]UES e Scale easily with optimized mpidpy and Jupyter notebooks

Faster access to latest e Distribution and individual optimized packages available through conda

optimizations for Intel and Anaconda Cloud
architecture ¢ Optimizations upstreamed back to main Python trunk




WHAT'S IN INTEL” DISTRIBUTION FOR PYTHON*?

SCIPY-STACK + SELECTED BIGDATA/ML/HPC PACKAGES

Math/Compute

Numpy
Scipy
pyDAAL
Scikit-learn
Numexpr
Sympy
Mpmath

Intel MKL
IPP
Intel DAAL
Intel Compiler

* Python 2.7/3.5 .
* Jinja2

Pyyaml
e Tornado

Parallelism/Performance

TBB
Mpidpy
Numba
Cython
Pyzmq
Distarray
Pandas
Pytables

H5py

Intel TBB
Intel MPI
Intel Compiler

Misc

Livmlite
Six

Productivity
Conda
Pip
Jupyter
Notebook
Matplotlib
Nose/pytest/mock

Powered by

aw
[
.

N

ANACONDA

Powered by Continuum Analytics |

MarkupSafe * Dateutil

Pytz

otice L]



SCIKIT-LEARN™ OPTIMIZATIONS WITH INTEL™ MKL

Speedups of Scikit-Learn Benchmarks

Intel® Distribution for Python* 2017 Update 1 vs. system Python & NumPy/Scikit-Learn
9x
8x

7%
6x
5x
4x
3x
2x
‘A Il m el m
Ox
Approximate neighbors Fast K-means GLM net LASSO Lasso path Least angle regression, Non-negative matrix Regression by SGD Sampling without
OpenMP factorization replacement

System info: 32x Intel® Xeon® CPU E5-2698 v3 @ 2.30GHz, disabled HT, 64GB RAM; Intel® Distribution for Python* 2017 Gold; Intel® MKL 2017.0.0; Ubuntu 14.04.4 LTS; Numpy 1.11.1; scikit-learn 0.17.1. See Optimization Notice.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. * Other brands
and names are the property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804 .




INTEL" DAAL: HETEROGENEQUS ANALYTICS

Available also in open source:

https://software.intel.com/en-us/articles/opendaal

« Targets both data centers (Intel® Xeon® and Intel® Xeon Phi™) and edge-devices (Intel® Atom)

« Perform analysis close to data source (sensor/client/server) to optimize response latency, decrease
network bandwidth utilization, and maximize security

« Offload data to server/cluster for complex and large-scale analytics

Pre-processing Transformation Modeling . Decision Making

Scientific/Engineering

4 CTTT ‘ v
- e @ .o o I|“|I @
Ve g - S o=
PCA Regression Clustering
- i * Linear * Kmeans
Ege ;gorp?ref[?lon Statistical moments - Ridge . EMGMM
e-)Serialization :
Qua‘mtlles _ Classification
Variance matrix * Naive Bayes Collaborative filtering
QR, SVD, Cholesky c SVM * ALS
Apriori * Classifier boosting

Outlier detection kNN Neural Networks




PERFORMANCE EXAMPLE : READ V. COMPUTE

System Info: Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz, 504GB, 2x24 cores, HT=on, OS RH7.2 x86_64, Intel
Distribution for Python 2017 Update 1 (Python 3.5)

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in
fully evaluating your contemplated purchases, including the performance of that product when combined

° Algorithm: SVM ClaSSiﬁcation With RBF kernel :/Oi:l:et:hlirtslrgg:;;sr;t;nOther brands and names are the property of their respective owners. Benchmark

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel

° Trai N i ng d ataset: CSV fi le (PCA— p re p ro Cessed M N I ST, 40 microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include

SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability,

p ri n Ci pal com po nen ts) n= 4 2 OOO’ p = 40 functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.
Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please

* Testing dataset: CSV file (PCA-preprocessed MNIST, 40 ot e oty e e e T e e spc
principal components) n=28000, p=40

Training (sec) 60% faster Prediction (sec)

2 CSV read
20 2.2X 20

15 15

66x Balanced
read and
10 10 compute

0 I ——— ——eeee 0 — —_—e

Scikit-Learn, Pandas pyDAAL Scikit-Learn, Pandas pyDAAL

B Read Training Dataset (incl. labels) Training Compute B Read Test Dataset Prediction Compute




INTEL" TBB: PARALLELISM ORCHESTRATION IN PYTHON ECOSYSTEM

» Software components are built from smaller ones
* |If each component is threaded there can be too much!
* Intel TBB dynamically balances thread loads and effectively manages

oversubscription
> - I I [ )
python -m TBB application.py
omponent 1

Thread
Pool

Intel® Intel® TBB module
o) ®
Il IRy for Python
Intel® TBB runtime
7010 *o8ig9010,0m anizat

Numpy Scipy PyDAAL A Joblib Dask

Numba




COLLABORATIVE FILTERING

* Processes users’ past behavior, their activities and ratings
* Predicts, what user might want to buy depending on his/her preferences

Collaborative Filtering Similarities in users preferences (in Green) are
used to predict ratings

—~/

<
2
e

| PR a
ﬁ

-1l 14| =

\-ﬁ'f\,\ll [
—| ) | B | 6|4 B ||
- &40 &=

() |4=s B

!

S

b be[be be b

bo b be b )
B4

\
-
- 4

{
|
\

From Wikipedia




TRAINING: PROFILING PURE PYTHON

| B e b % aE| @[ welcome numpy_intel numpy_default || r010hs
& Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ INTEL VTUNE AMPLIFIER XE 2017
2 Collection Log| | @ Ar is Target Analysis Type| | M Summary % Caller, ee B Platform
. . . Grouping: |Funchon,fca\l Stack - CPU Time
ltems Slmllarlty assessment Viewing  1of1 | selected stack(s)

I 100.0% (10.746s of 10.746s)

ibcf.pylcompute similarity matrix - ibef.py
ibcf. pylmain+0x69 - ibcf py: 145

(Similarity matrix Computation) Function / Call Stack CPU Time~ Module Function (Full

IS t h e main h OtS p Ot ®compute_similarity_matrix ibcf compute_similarity_matrix |i} m:ﬁ ;}fjﬁmg& ~qunk.
- make_predictions 0.747s|) ibcfpy make_predictions il [ *ERNEL32.DLLIBsseThreadinitThunk+(xd...

Efilter_top_matrix 0.360s l ibcf.py filter_top_matrix
Bfunc@0x1d0011b8 0 E.r'.-?;l python.exe func@0x1d0011b8

ntdll.dlllBilJzerThreadStart+0x33 - [unkno...

do_norm 0.190s ‘ ibcfpy do_norm

FfuneMNe1a128hhn N NEN ‘ enlita? rud funemiNe1a128hhn
Selected 1 row(s): 10.746s

=

it , , , , , , : " , , , ) ; : : Thread |z|

func@0x1d0013... [¥] @8 Running

[¥] ks CPU Time

[¥] sk Spin and ...

1% CPU Sample
[¥] CPU Usage

[¥] luk CPU Time

[¥/] sk Spin and ...

CPU Usage

Configuration Info: - Versions: Red Hat Enterprise Linux* built Python*: Python 2.7.5 (default, Feb 11 2014), NumPy 1.7.1, SciPy 0.12.1, multiprocessing 0.70a1l built with gcc 4.8.2; Hardware:
24 CPUs (HT ON), 2 Sockets (6 cores/socket), 2 NUMA nodes, Intel(R) Xeon(R) X5680@3.33GHz, RAM 24GB, Operating System: Red Hat Enterprise Linux Server release 7.0 (Maipo)




TRAINING: PROFILING PURE PYTHON

This loop is major bottleneck.
Use appropriate technologies
(NumPy/SciPy/Scikit-Learn or
Cython/Numba) to accelerate

(B

s |2 ezl b B ab

& | @

& Basic Hotspots Hotspots by CPL viewpoint (change) @ INTELUTUHEAHFLIFIERKE2I]1?
B Summary | |*% Bottom-up| |*% Call llee| |*% Top|*
CPU Time -
Viewing ¢ l1of1..
S ) | 100.0% (13.725s ..
L - Source CPU Time: Tota ibct pylcompute si_
ibef. pylmain+0x8d ...
. N N N ibcf.pyl<module=+..
79 def compute similarity matrix(matrix): | python. exelfunc@..
a0 items num, users num = len(matrix), len(m KERNEL32.DLLIE..
. ) . . ntdll dll'BtlUserThr...
31 cosine sim matrix = [ items_num * [0] for |
32 for i in range( items num ): Ei
83 for j in range( items num ) : |
84 sum = 0 |
85 for k in range( users_num ): 13.1%.
a— sum 4= matrix(i] (k] * matrix[| 69.7% NN
87 cosine sim matrix[i][j] = sum 0.7%|
88 for i in range( items num ):
Sele..
« n '] b

Configuration Info: - Versions: Red Hat Enterprise Linux* built Python*: Python 2.7.5 (default, Feb 11 2014), NumPy 1.7.1, SciPy 0.12.1, multiprocessing 0.70a1l built with gcc 4.8.2; Hardware:
24 CPUs (HT ON), 2 Sockets (6 cores/socket), 2 NUMA nodes, Intel(R) Xeon(R) X5680@3.33GHz, RAM 24GB, Operating System: Red Hat Enterprise Linux Server release 7.0 (Maipo)




TRAINING: PYTHON + NUMPY (MKL)

u M UCh faSte rl [h| | B B & | @| weicome | numpy_d.. | ibci-ibe i.| numpy_in..|| ro12ns r013hs

= The most compute- - _ __ -~
IntenS|Ve part ta keS NSO/O Groupirlg: |ModulefFuncﬁofCaII 5 = .- = : vl :I CPU Time =
of all the execution time T o ) e e

Module / Function / Call Stack CPU Time~ Mo

aqlite3.dlllfunc@0x1 20007300 - [unkno... -
sqlite3 dillfunc@0x12000c300+0%90 - [u...
sqlite3.dlllfunc@0x12000c510+0x8c - [u...

& sglite3.dll 64.4' ! sqlite3.dlllfunc@0x180009350+0xeb - [..

multiarray.pyd 6.7% . sqlite3.dlfunc@0x18000ce60+0x4a - [u..
sqlite3.dIlfunc@0x18000f580+0x23 - [u...
random.py 5.5%( sqlite3.dIlfunc@0x12000f650+0x10 - [u..
#_csparsetools.pyd 5.4% . sqlite3.dll'func@0x120011b20+0x2a - [
- sqlite3.dIlfunc@0x180011/50+0x340 - .
Selected 1 row(s): 64.4% sqlite3.dIlfunc@0x18000e620+0x75 - .

| qlia T v Dsaiteadiiunc@0x180014820+0x87 - . _

' ' ' ' i ' ' i M - 11
505 . '1 OOS 1 505 20E [¥] | Thread i

T S A ————
[¥] duk CPU Ti...
CPU Usage [¥] duk Spin a...
| ® ¥ CPU Sa...

Speedup, times

409,6
102,4
25,6
6,4
1,6
&
0,1

Pure python Numpy




INSTALLING INTEL" DISTRIBUTION FOR PYTHON* 2017

Stand-alone installer and on anaconda.org/intel .
g/ Windows

Download full installer from
https://software.intel.com/en-us/intel-distribution-for-python

conda config —--add channels intel
conda create -n 1dp intelpython3 core python=3
conda create -n 1dp intelpython3 full python=3

source activate 1idp







INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR
A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products.

Copyright ® 2017, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of
Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.
Notice revision #20110804

Optimization Notice



