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INTRODUCTION
We consider mathematical model describing the thermoelastic state of body, taking
into account the presence of fractures. Mathematical model is described by the cou-
pled system of equations for temperature and displacements. The standard way of
accounting for fractures is a model based on the construction of a computational
grid with a crack resolution through several cells and specifying heterogeneous
coefficients.
Since in practice, the thickness of the crack is sufficiently small relative to the area
size, its grid resolution leads to a significant increase in the unknowns. For the nu-
merical solution of considered problem we make an approximation on coarse-scale
grid using numerical homogenization procedure, which is based on computing ef-
fective properties for hererogeneous media. For the approximation of fine-scale
grid for the fractured media with low conductive fractures, we use reduced model.
We consider two types of the fractures: connected fracture network and uncon-
nected small fractures.

RESULTS

Let us consider numerical simulation of the thermoelasticity problem using the pro-
posed models. The geometric area with the calculated grid is shown in Figure be-
low. The computational domain Ω = [0, Lx] × [0, Ly] c Lx = Ly = 1. The
simulation was performed with the initial condition T0 = 10 with τ = 360 and
tmax = 36000.

Computational grid with 19,800 elements.

For the calculations, the following parameters were used:
• Heat capacity coefficients for the main medium and pores: cs = 6e5 and
cg = 103,

• Coefficients of thermal conductivity of the main medium and pores: ks =
15 and kg = 0.02,

• fracture properties: kf = 0.02 (coefficient of thermal conductivity), δ =
0.001 (fracture thickness) and αf = kf/δ,

• source f = 108,
• Mass transfer coefficient between continuum ζ = 50.
• Lame parameters: λ = 1.25e11 and µ = 0.8e11.
• Temperature coefficient of linear expansion αT = 1.45e− 7.

Distribution of temperature fields for two continuum and displacement at the last
moment of time using the double diffusion model for the first test geometry.

Temperature distribution at the last time along the line y = Ly/2 for a model
using one and two continuum for the first test geometry.

Next, let us consider numerical simulation of the thermoelasticity problem using
the proposed models. The geometric area with the calculated grid is shown in Fig.

. The simulation was performed with the initial condition T0 = 0 with τ = 0.1
and tmax = 5.

The fine-scale grid with 100,000 elements.

For the calculations, the following parameters were used:
• Heat capacity coefficients for the medium: c = 1,
• Heat conductivity coefficients of the medium k = 0.1 + 2000 · σ(x),
• Crack properties: kf = 0.01 (coefficient of thermal conductivity), δ =

0.001 (fracture thickness) and αf = kf/δ,
• source f = 0,
• Lame parameters: λ = 1.25e5 and µ = 0.8e5.
• Temperature coefficient of linear expansion αT = 1.45e− 6.

Distribution of temperature and displacement fields at T = 5.0 time for fine and
coarse grids.

Dependents of RMS error from time. Left: for temperature. Right: for
displacement.

For numerical comparision, we consider the relative L2 error

||e||L2 =

√∫
Ω

(Th − TH)2dx√∫
Ω
T 2
hdx

where Th and TH are the fine-scale and coarse-scale solutions, respectively.
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CONCLUSION
In this work, we study an Interior penalty discontinuous Galerkin method for a
fine-scale solution of the thermoelasticity problem.
Computing of effective properties is based on solution of the local problems in each
coarse mesh cells. We present numerical result, where we illustrate the accuracy of
the proposed algorithm. Our results show that the presented method can provide
good accuracy of the solution with small fractures.
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MATHEMATICAL MODEL
Let us consider a porous material, the pores of which are filled with low conducting
gas. The mathematical model, taking into account the heat exchange between the
skeleton of the porous medium and the pore space, is written as follows

ds
∂Ts

∂t
+ βs div

∂u

∂t
− div(bs gradTs) + ζ(Ts − Tg) = f, x ∈ Ω,

dg
∂Tg

∂t
+ βg div

∂u

∂t
− div(bg gradTg) + ζ(Tg − Ts) = 0, x ∈ Ω,

− div(σ(u)) + βs gradTs + βg gradTg = g, x ∈ Ω,

(1)

where σ(u) = λ tr(ε)I + 2µε, ds = (1 − φ)Cs, bs = (1 − φ)ks, dg = φCg ,
bg = φkg , fs = (1 − φ)qs, fg = φqg and ζ – function of heat transfer between
the subregions. phi – porosity, ks, Cs, qs coefficients of thermal conductivity,
heat capacity and sources for the skeleton of a porous medium, and kg , Cg , qg –
coefficient of thermal conductivity, heat capacity and sources of pore space (gas-
filled subdomain).
Here, we use an approach which is based on the use of double continuum models
(double diffusion), which are constructed under the assumption that there is no
local thermodynamic equilibrium, that is, Tg 6= Ts.
On the surface of a fracture, we set{

−ks
∂Ts

∂nf

}
= αf [Ts],

[
−ks

∂Ts

∂nf

]
= 0, x ∈ γ, (2)

and

[σnf ] = 0, {σnf} = −βs[Ts]nf , x ∈ γ. (3)

We consider the approximation of the problem (1) using the Galerkin discontinu-
ous method (IPDG, interior penalty discontinuous Galerkin).
The variational formulation of the problem is written as follows:

{
mT (T, r) + aT (T, r) = lT (r),
au(u, v) + g(T, v) = lu(v),

where

aT (T, r) =

∫
Ω

k∇T · ∇r dx−
∫

Γ/γ

{k∇T · n}[r]ds−
∫

Γ/γ

{k∇r · n}[T ]ds

+
θ

h

∫
Γ/γ

{k}[T ][r]ds+

∫
γ

αf [T ][r]ds+

∫
∂Ω

η Tr ds,

lT (r) =(f, r) +mT (Ť , r) +

∫
∂Ω

η Toutr ds, mT (T, r) =
1

τ
(T, r).

au(u, v) =

∫
Γ

(σ(u), ε(v)) dx−
∫

Γ/γ

{τ(u)}[v]ds−
∫

Γ/γ

{τ(v)}[u]ds

+
θ

h

∫
Γ/γ

{λ+ 2µ}[u][v]ds+

∫
γ

β[T ]nf [v]ds,

g(T, v) =β(grad(T ), v), lu(v) = (g, v),

τ(u) = σ(u)n.

This approximation allows us to take into account the interface conditions (2) – (3)

in a natural way in the variational formulation of the problem.

HOMOGENIZATION
Next, we consider the numerical homogenization procedure for the heat transfer
equation. Consider the parabolic equation

C(x)
∂T

∂t
−∇ · (k(x)∇T ) = 0, x ∈ Ω, t > 0,

where a(x) and b(x) – heterogeneous coefficients defined on a fine-scale grid.
To construct an effective diffusion properties, we will solve local problems in cells
of the coarse gridK:

−∇ · (k(x)∇ml) = 0, x ∈ K,

with the Dirichlet boundary conditions

ml = xl x ∈ ∂K.

The effective diffusion coefficient k? is calculated by averaging the fluxes

k
?
·,l =

1

|K|

∫
K

k(x)∇ml dx.

To average the coefficient b? with the time derivative, since it does not stand under
the sign of the derivative, you can use the average value in the local area

b
?

=
1

|K|

∫
K

b(x) dx.

After calculating the averaged coefficients k?(x) and b?(x), we can solve the prob-
lem on a coarse-scale grid

b
?
(x)

∂T

∂t
−∇ ·

(
k
?
(x)∇T

)
= 0, x ∈ Ω, t > 0,

where k? is an anisotropic diffusion coefficient

k
?

=

[
k?x,x k?x,y
k?y,x k?y,y

]
.

To determine the effective modulus of elasticity for each coarse grid cell K, we
solve the equation on a shallow grid in the local area, for example, using the finite
element method. We write the variational formulation: find u(rs) ∈ Vh(K) such
that

a(u
(rs)

, v) = 0, v ∈ Vh(K),

where

a(u, v) =

∫
K

(σ(u), ε(v))dx,

with the Dirichlet boundary conditions

u
(rs)

= Λ
(rs)

x on ∂K,

Λ
(rs)
ij =

1

2
(δirδjs + δisδjr)

and r, s = 1, 2. The components of the effective modulus of elasticity C? are
defined as the mean value of locally calculated strains

C
?
rspq =

1

|K|

∫
K

Cijklε
(rs)
ij ε

(pq)
kl dx,

where r, s, p, q = 1, 2 and ε(rs) = ε(u(rs)) – strain tensor for (rs) load.

Distributing displacement on coarse element with fracture.


