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INTRODUCTION
In this work we consider the elliptic equation in perforated media for CG and mixed formulation. Nonhomogeneous boundary conditions on perforations can be considered for many
applied problems. For example, the Robyn boundary conditions usually applied at the boundaries of the solid medium for reactive processes in porous media. For such processes we
should resolve perforations and heterogeneity using very fine grid which leads to the large discrete systems and computationally expensive.
The classic method for solution of such problems on the coarse grid are a homogenization techniques[1]. The homogenization methods are used to construct the approximation of the
problem on a coarse grid and allow to calculate the effective properties of the medium. In this method, an additional term is used for describing the pore-scale reaction on the coarse
grid approximation. The multiscale methods can be applied for the coarse grid approximation by solution of the local problems and construction of the multiscale basis functions [2].
In this method we have a two-way information exchange between micro and macro levels. In this work, we use a generalized multiscale finite element method (GMsFEM) [3]. This
method based on the calculation of the multiscale basis functions to reduce the dimension of the problem. For handling a boundary conditions on the perforations, in GMsFEM we
construct the additional basis function, which improves the accuracy of the method.

MATHEMATICAL MODEL

In this work we consider the standard elliptic equation

−div(kgradu) = f, x ∈ Ω. (1)

We will solve this equation in two cases of boundary
conditions. The first case is Dirichlet boundary condi-
tion on perforations:

∂u

∂n
= 0, x ∈ Γ1,

u = 1, x ∈ Γp.

(2)

The second case is inhomogeneous Robyn boundary
condition on perforeations:

∂u

∂n
= 0, x ∈ Γ1,

∂u

∂n
= α(u− a), x ∈ ΓP .

(3)

Our work also includes the solution of an elliptic equa-
tion in a mixed formulation{

k−1q +∇c = 0

divq = 0
, x ∈ Ω, (4)

with following boundary conditions:

q · n = 0, x ∈ Γ1,

c = g, x ∈ ΓP .
(5)

Where is ΓP the boundary of perforations. Computa-
tional domain Ω is shown in fig.1

Figure 1: Computational domain

CG GMFEM
In this section, we will describe construction local reduction of a model on the snapshot
space by solving some local spectral problems with use GMsDGM.
First, we need to select subdomains ωi and Kj , from our fine mesh. Then we solve
partitions of unity in eachKj for all ωi. The partitions of unity are linear functions. (fig.
2)

Figure 2: Subdomains ωi, Kj and partitions of unity

Then we solve the following spectral problem in each ωi:

Aϕ = λSϕ, x ∈ ωi. (6)

We must choose the first vectors ϕ, which correspond toL the first minimal eigenvalues
λ. Variational formulations are defined below for matricesA and S, respectively.

a =

∫
ωi

(k∇u,∇q)dx, s =

∫
ωi

(ku, q)dx

where q is test function.
This spectral problem we solve on the snapshot space which we obtain by solving the
following problem:

For Dirichlet BC For Robyn BC
q
∫
ωi
k∇u∇vdx = 0,

∫
ωi
k∇u∇vdx+

∫
∂H

αuvds = 0

u = δi, x ∈ ∂ωi/∂H , u = δi, x ∈ ∂ωi/∂H ,
u = 0, x ∈ ∂H.

Where δi is a function which in turn takes the value 1 at one point, and all other 0, ∂H -
the boundary of perforations, ∂ωi - the external boundary of ωi.
After solving the spectral problem, we obtain the bases for the transition to the coarse
grid space (fig. 3). In order to take into account boundary conditions on the perforations,
we add the following additional basis in the ωi regions where there are perforations(fig.
4):

For Dirichlet BC For Robyn BC∫
ωi
k∇u∇vdx = 0,

∫
ωi
k∇u∇vdx+

∫
∂H

αuvds =
∫
∂H

αfvds

u = 0, x ∈ ∂ωi/∂H,, u = 0, x ∈ ∂ωi/∂H ,
u = 0, x ∈ ∂ωi/∂H.

Figure 3: First three bases and additional basis for Dirichlet bound-
ary conditions

Figure 4: First three bases and additional basis for Robyn boundary
conditions

CG GMSFEM NUMERICAL RESULTS
We present a numerical results of problem with Dirichlet boundary conditions on perfo-
rations (1),(2) on fig. 5. The values of the coefficients are taken as follows: k = 0.1, f =
1. Relative errors in the L2 and H2 norm are presented in the table 1. As an exact
solution, the FEM result was taken.

Figure 5: Numerical solutions with Dirichlet boundary conditions of
FEM (left), GMsFEM (right)

Basis count L2 norm H1 norm
1 16.88 105.64
2 9.17 80.30
4 3.44 49.15
6 1.67 29.47
8 0.88 19.72
12 0.40 10.23
16 0.17 5.43

Table 1: The error of solution with Dirichlet boundary condition on
perforations

The numerical results of problem with inhomogeneous Robyn boundary conditions on
perforations (1),(3) on fig. 6. The values of the coefficients are taken as follows: k =
0.1, f = 0, α = 10, a = 1. Relative errors in the L2 and H2 norm are presented in the
table 2.

Figure 6: Numerical solutions with inhomogeneous Robyn bound-
ary conditions of FEM (left), GMsFEM (right)

Basis count L2 norm H1 norm
1 10.25 73.21
2 4.04 46.59
4 1.77 27.87
6 0.78 14.37
8 0.50 10.75
12 0.21 5.65
16 0.11 3.64

Table 2: The error of solution with inhomogeneous Robyn boundary
condition on perforations
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CONCLUSION AND FUTURE WORKS
In this paper, we considered an elliptic equation in CG and mixed formulations. The

results have good accuracy, the error decreases when number of bases increase. In the

future we plan to use Robyn boundary conditions at the perforations for the mixed for-

mulation and consider pore scale reactive flow.

MIXED GMSFEM
In the case of mixed formulation, we have two unknowns flow q and concentration c
functions. We compute basis function only for flow. Unlike the CG GMsFEM, the value
of the flow is taken on the facets and therefore, in this case the ωi region consists of
subregionsKj around each coarse facet.
To compute basis we solve a spectral problem 6. But variational formulations for ma-
trixesA and S will change:

a(u, v) =

∫
Ei

(u · n)(v · n)ds, s(u, v) =

∫
ωi

uvdx+

∫
ωi

divu divvdx.

Where Ei is coarse facet on fine grid in ωi. We solve the spectral problem on snapshot
space which obtain from solving next local problem (fig. 7):

{
k−1q +∇c = 0

divq = 0
, x ∈ ωi,

q · n = 0, x ∈ ∂ωi ∪ ∂H
q · n = σi, x ∈ Ei

Where σi is a function which in turn takes the value 1 at one fine facet on, and all other
0. We need to compute smooth first basis separately, and additional basis to take into
account boundary condition on perforations(fig 7):

{
k−1q +∇c = 0

divq = 0
, x ∈ ωi,

For first basis For additional basis
q · n = 1, x ∈ Ei q · n = 1, x ∈ ∂H
q · n = 0, x ∈ ωi q · n = 0, x ∈ ωi

Figure 7: First three bases and additional basis

MIXED GMSFEM RESULTS
We present a numerical results of mixed problem (4),(5) for flow and concentration on
fig. 8 . The values of the coefficients are taken as follows: k = 0.1, f = 1, g =
1. Relative errors in the L2 and H2 norm are presented in the table 3 for flow, for
concentration in the table 4. For concentration we compute error only in L2 norm.

Figure 8: Numerical results of flow(1st and 2nd columns) and con-
centration (3rd column)(First row - FEM results, Second row - GMs-
FEM results

Basis count L2 norm H1 norm
1 134.11 90.73
2 6.27 4.24
3 0.90 0.61
4 0.54 0.36

Table 3: The error of result
for flow

Basis count L2 norm
1 53.57
2 6.69
3 6.61
4 6.61

Table 4: The error of result
for concentration
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