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Introduction
Quasistatic method [1]. One of which depends on the time

and is related to the amplitude, the second (shape function)
describes the spatial distribution. The shape function is of-
ten associated with the fundamental eigenfunction of certain
eigenvalue problems for neutron diffusion equations.

Modal method [2]. In this case, the solution is represented
in the form of a sum of several dominant eigenvalues with time-
dependent coefficients.

Nonstationary processes can naturally be described on the
basis of the approximate solution expansion in time-eigenvalue
of α-eigenvalue problem [3]. We deal with an unbound system
of equations for the coefficients. It should also be noted that
the eigenvalues are complex for both λ- and α-eigenvalue prob-
lem. To set the initial state, this leads to the need to solve the
appropriate adjoint spectral problems.

In this paper, we formulate a general strategy for the ap-
proximate solution of nonstationary problems of neutron trans-
port in nuclear reactors, which is oriented to fast real-time cal-
culations using the SCM method.
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Problem statement
Define vectors φ = {φ1, φ2, ..., φG}, c = {c1, c2, ..., cM} and
matrix:

V = (vgg′), vgg′ = δgg′v−1
g ,

D = (dgg′), dgg′ = −δgg′∇ ·Dg∇,
S = (sgg′), sgg′ = δgg′Σrg − Σs,g′→g,

R = (rgg′), rgg′ = (1− β)χgνΣfg′ ,

B = (bgm), bgm = χ̃gλm,

Λ = (λmm′), λmm′ = λmδmm′ ,

Q = (qmg), qmg = βmνΣfg,

g, g′ = 1, 2, ..., G, m,m′ = 1, 2, ....,M.

Multigroup diffusion equation:

V
dφ

dt
+ (D + S)φ = Rφ+Bc,

dc

dt
+ Λc = Qφ.

Here φg(x, t) is the neutron flux, vg is the effective neutron
velocity, Dg(x) – diffusion coefficient, Σg(x, t) – removal cross-
section, Σs,g′→g(x, t) – scattering cross-section, νΣfg(x, t) –
generation cross-section, χg (χ̃g) – fraction of neutrons, cm –
delayed neutron source density, λm – decay constant of the
delayed neutron sources.
The Cauchy problem is solved under the initial conditions:

φ(0) = φ0, c(0) = c0,

where φ0 = {φ0
1, φ

0
2, ..., φ

0
G}, c0 = {c01, c02, ..., c0M}.

State change cheme
The state of the reactor is characterized by the constant coef-
ficients of the system of multigroup diffusion equations.

state s− 1 state s state s+ 1

ts−1 ts t

Dynamic processes in a nuclear reactor can be considered as
a change of states. At a certain time t = ts, s = 1, 2, ... an
instantaneous change of state occurs. The state s is defined by
the parameters in equations:

V (t) = V (ts), D(t) = D(ts), S(t) = S(ts), R(t) = R(ts),

B(t) = B(ts), Λ(t) = Λ(ts), Q(t) = Q(ts)

ts−1 < t ≤ ts, s = 1, 2, ...

Modal approximation
Non-stationary process at a separate stage is based on modal
approximation. Let’s u = {φ, c}, φ(ts−1) = φs, c(ts−1) = cs.
In a separate stage s the following system is considered

B
du

dt
+Au = 0, ts−1 < t ≤ ts,

with constants

A =

(
D(ts) + S(ts)−R(ts) −B(ts)

−Q(ts) Λ(ts)

)
, B =

(
V (ts) 0

0 I

)
.

Supplemented by the corresponding initial condition

u(ts−1) = us.

The matrices Ah and Bh are real and asymmetric.
The modal approximation corresponds to the representation of
the approximate solution (uh ≈ uN ) of problem in the follow-
ing

uN (x, t) =
N∑

n=1

an(t)wn(x),

where N is the number of dominant eigenvalues of the spectral
problem, wn(x) — corresponding eigenfunctions.
We consider α-eigenvalue problem

Ahv = λBhv.

Then we obtain

an(t)wn(x) = bnRe
(

exp(−λn(t− ts−1))vn(x)
)
,

an+1(t)wn+1(x) = bn+1Im
(

exp(−λn(t− ts−1))vn(x)
)
.

A special attention should be paid to define the coefficients
an(ts−1) = bn, n = 1, 2, ..., N . For this, the initial condition is
involved. For example, in the case of real eigenvalues, we have

us
h(x) =

Nh∑
n=1

bnvn(x).

Adjoint spectral problem
Consider the adjoint spectral problem

AT
h ṽ = λBT

h ṽ.

The eigenfunctions of problems are orthogonal in the sense of
the equality

(Bhvn, ṽm) = 0, m 6= n, m, n = 1, 2, ..., Nh.

In view of this, one can obtain

bn =
1

(Bhvn, ṽn)
(us

h,Bhṽn), n = 1, 2, ..., Nh.

In the approximate solution of problem only the first N coef-
ficients bn are used:

csh(x) ≈
N∑

n=1

bncn(x),

where vn(x) = (φn(x), cn(x)). In this case, the spectral prob-
lems are solved for N dominant eigenvalues.

Off-line calculation. Calculation of the coefficients of the
mathematical model of the multigroup diffusion approxi-
mation for the isolated reactor states, which is performed
in advance. The status passport also includes calcu-
lated dominant eigenvalues and eigenfunctions of the α-
eigenvalue problem. These data can be supplemented by
dominant eigenvalues and eigenvalues of the conjugate
eigenvalue problem.

On-line calculation. Real-time modeling is carried out on
the basis of the modal solution of the problem. The co-
efficients in the representation are calculated from the
initial condition. The solution for other time intervals is
determined according to modal approximation.

Time scale processes
The initial condition includes two components

us
h(x) = (φs

h(x), csh(x)).

Dynamic behaviour of these components is due to different
time-scale processes.

Delayed neutrons source determines slow processes, when
c(x, t) changes slightly with the reactor state change. In con-
trast, neutron flux φ(x, t) determines fast processes when
the reactor state changes.

By virtue of this separation of dynamic processes, we model the
slow phase of the dynamics of the reactor with modal approx-
imation and orientate ourselves on the approximate prediction
of the initial state for delayed neutrons, only the function csh(x)
is approximated. The approximation φs

h(x) is not of interest
to us, we do not model a fast phase of the state change.

Numerical experiments
The dynamics of the VVER-1000 (Fig 1.) reactor during the
transition from the supercritical mode to the subcritical mode

Fig. 1 Geometry

• two-dimensional

• two group instantaneous
and one group of delayed
neutrons

• triangles per cassette κ
varies from 6 to 96

• order of finite elements p
varies from 1 to 3

• two types of perturbation

The coefficients bn, n = 1, 2, ..., N , N = 50 of the approximate
solution with the initial condition are shown in Fig. 2.

Fig 2. Approximate solution
coefficients

Fig 3. Neutronic power

The dynamics of the neutron power of the nuclear reactor
P (t) =

∫
Ω

(νΣf1φ1(x, t) + νΣf2φ2(x, t))dx and the delayed
neutrons source C(t) =

∫
Ω
c(x, t)dx at the initial stage dur-

ing the transition from the critical state to the subcritical is
shown in Fig. 3.

The beginning and the end of the fast phase are illustrated
through the calculational data shown in Fig. 4.
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Fig 4. Function u(x, 0) (string 1) and function uN (x, 0)

(string 2): a — neutron flux of group 1, b — neutron flux of
group 2, c — delayed neutrons source.

Fig 5. Neutronic power Fig 6. Delayed neutrons sourse
The dynamics of the slow phase is illustrated in Figs. 5, 6.


