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INTRODUCTION

In this work, we consider the poroelasticity problems in heterogeneous porous media.
Mathematical model contains coupled system of the equations for pressure and displace-
ments. For the numerical solution we research and implement a Generalized Multiscale
Finite Element Method(GMsFEM). This method solves a problem on a coarse grid by
creation of the local multiscale basic functions.

We compare the solutions by choosing different numbers of multiscale basis functions
and results show that GMsFEM can provide good accuracy.

MATHEMATICAL MODEL

We consider linear poroelasticity problem where we wish to find a pressure p and dis-
placements u satisfying

—divo(u) + agrad(p) = fu(x,t), x € Q, 0 <t < T, (1)

k
« + i —gradp) = fp(z,t), € Q, 0<t<T, (2)
ot t v

Here the primary sources of the heterogeneities in the physical properties arise from
elasticity tensor in stress o and permeability k. We denote M to be the Biot modulus, v
is the fluid viscosity, o is the linear stress, € is the strain tensor and « is the Biot-Willis
fluid-solid coupling coefficient. o and ¢ are given as

o(u) =2ue(u) + Adiv(u)l,

1
e(u) = E(gradu + gradu’),

where p1, A are Lame coefficients, I is the identity tensor. In the case where the media
has heterogeneous material properties the coefficients 1+ and A may be highly variable.
The problem for the system of equations (1) - (2) is considered in a bounded domain (2.
For displacements on the boundary 02 = I'p + I' v we set

u=0,z€Il'p, —on=0, z € I'y, (3)

Where n is the unit normal to the boundary. Similarly, for pressure, we set Dirichlet and
Neuman boundary conditions

p=0, xel'sul'yUTls5
At the initial time ¢, the following condition is given
e(x,0) =0, p(x,0) = pg, = € Q,

for deformations and pressure.
Space approximation

For approximation by space, we use finite element method abd write the variational
formulation for equations (1) - (2) with the initial boundary conditions (3) - (5): find
u € W, p € V such that

a(u,v) + g(p,v) = 1“(v), v € W'

d(t, q) +b(p,q) =1"(q), a € V'

Here the bilinear and linear forms are given as follows:

a(wv) = [ a(we(v)de, g(p.v) = o | gradp vda,

’U/, = ;U, C 5 = — :l?7

b(p, q) :/(kgradp,gradQ)d:v,
Q

1“(v) = /quvda:, I”(q) = /prqda:—l—/(%zplqu.

Bilinear forms a(-, -),b(, -) and c(-, -) are symmetric and positively defined, d(v, v) =
—g(v,v) forv e V,v € W.

Approximation by time

For approximation by time, we use an implicit difference scheme

/ ae(un+1)s(v)d:ﬁ+a/ grad p"vdx = fy(x,t)
Q Q

/ div(u™Tt —
(8
(@) T

—|—/ (k gradpn+1,gradq)dx = fp(z,t),
Q

u") 1 n—+1
d — d
qa:+M/Qp qaxr—+

where we use linear basis functions for pressure and for displacements.
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GMSFEM FOR POROELASTICITY

In this section, we describe in detail the Generalized Multiscale Finite Element Method (GMsFEM) for solution of the poroelasticity erss_ur;u At (RU T gfp_ac;inentzu R T
problems in heterogeneous media. GMsFEM contains three steps: (1) Construction of the coarse and fine meshes and local domains . smap u( s ap) | S oimer ( snap )T ’
where we construct multiscale basis functions, (2) Solve local spectral problems for construction of the multiscale basis functions and (3) A" =Ry, p A (Ronap) | S = REpapST (R pap) -

Construction and solution of the coarse scale approximation on multiscale space.

Step 1. Construction of the coarse and fine meshes (7x and 73) and local domains (w;) where ¢; = (R~ YTgand ¢; = (R?

snap tnap) T4, As a result of solving the spectral problem, we have obtained the bases that are used
to move from small scale to coarse. Bases can be different numbers, with the increase in the number of bases, the accuracy of the solution
will improve.

For obtaining conforming basis functions we use linear partition of unity functions.
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Step 3. Assembling a matrices in a multiscale space
Next, we construct transition matrix R from a fine grid to a coarse grid and use it for reducing the dimension of the problem. The
transition matrix
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Step 2.  Spectral problem.  For construction of the multiscale basis functions. we solve a local spectral problems in domain w; for . _ .
displacement and pressure separately. The local spectral problems O o By * Pn o 0 o 0 0
Pressure Displacements \0 e 0 e 0 -+ Br,*Pn, -+ 0 /

a“(u,v) = Ay, s*(u,v),

a“(u,v) = fwi o(u)e(v)dx, s = fwi (A4 p)(u,v)dx,

a®(p, q) = Aps”(p, 9),

a?(p,q) = J. w; k grad p, grad q dz, s = [ w; (kp, q)dz, where subindexes x, y, p denote the displacement in x, y directions and the pressure, respectively. B; and P; are multiscale basis func-
tions and linear partition of unity functions, j = 0...L, 7 = 0...3 * N, L is the number of bases, N.. is the number of vertices of a coarse
grid, N ¢id the number of vertices of a fine grid. Thus, the dimension of the matrix R is equal to 3 * N.L X 3 * N.

where v, q is a trial functions. A multiscale spaces V},, Q,, we will form using eigenvectors 1, @2, ...or, Y1, VP2, ...¢1, corresponding
Then the system of equations can be translated into a coarse grid

to the first smallest L eigenvalues, where A1 < Ao < ... < A
We can write spectral problems in the matrix form

Acuc + Gepe = Fg,

Displacements D B _
pr — )\pspw, T € w;, clUc + cPc CH

Pressure
A% = Ay SYp, x € w;,
T T T T
where A", S* matrices for displacements and A?, S¥ for pressure. where Ac = Ry Ay R, , Bc = RyBfR, ,Fec = RyFy, Yc = RpYy, G. = RquRp ,Dc = Ry D¢ R, and
In the fact that the spectral problem must be solved many times. Therefore, it is possible to reduce the dimension of the problem. The
method consists in solving the spectral problem only at the boundary nodes of the domain w;. That is, we solve problems (1) in an-

1 p
other spaces, this spaces is called a snapshot space, denoted as Vi, q4p for displacement and Q5,4 for pressure. To go into spaces Aju = /Q o(u)e(v)dz, Byp= 7 /Q ;qdiﬂ + /Q (k grad p, grad ¢)dz,

Vsnap, @snap, you need to obtain a transition matrices R}, , p? R? b div u
Gsp = / agrad(p) -vdz, Dfu= o / qdxz, Fy = / fuvdz, Yy = / fpadx + / p1qds
. Q Q T Q Q o0
Pressure Displacements
R’u, — [Sosnap L SOS’I’LCLI)] Rp — [wS’T’LCLp . S’I’LCLp]
snap 1 UYLy D snap 1 P Ly D after obtaining of a coarse-scale solution, we can reconstruct fine-scale solition

Next, we move to spaces Vsnap, Qsnap and obtain the following eigenvalue problem 5T 5T
Ums = Ru Uecy Pms = Rp Pc

Pressure
A"G=7,5"%

Displacements
AP — ). S0 As a result, we obtain a solution on a fine grid for the problem of poroelasticity.

T € Vsnap T E Qsnap-

RESULTS

In this section, we present numerical examples to demonstrate the performance of the GMsFEM for computing the solution of the poroelasticity problem in heterogenous domains.
For the Biot modulus, we take M = 62500000 and set &« = 1.0, the Poisson’s ratio is v = 0.3. Permeability field and elastic modulus are shown in figure above. When solving of
poroelasticity problem the number of basis functions for displacement and pressure is the same. Time parameters: 1’4, = 0.001 and dt = 0.0001.

CONCLUSION

In this work, a Generalized Multiscale Finite Element Methods for the poroelasticity
problem in heterogeneous porous media is applied. For the numerical solution of the
arising coupled system of equations for pressure and displacements, an approximation
of the problem is constructed usingfinite element method with linear basis functions.
We show the errors relative with varying multiscale basis functions and distribution of
displacement along X and Y direction and pressure at the final time.
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