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INTRODUCTION
In this work, we consider the poroelasticity problems in heterogeneous porous media.
Mathematical model contains coupled system of the equations for pressure and displace-
ments. For the numerical solution we research and implement a Generalized Multiscale
Finite Element Method(GMsFEM). This method solves a problem on a coarse grid by
creation of the local multiscale basic functions.
We compare the solutions by choosing different numbers of multiscale basis functions
and results show that GMsFEM can provide good accuracy.

GMSFEM FOR POROELASTICITY

In this section, we describe in detail the Generalized Multiscale Finite Element Method (GMsFEM) for solution of the poroelasticity
problems in heterogeneous media. GMsFEM contains three steps: (1) Construction of the coarse and fine meshes and local domains
where we construct multiscale basis functions, (2) Solve local spectral problems for construction of the multiscale basis functions and (3)
Construction and solution of the coarse scale approximation on multiscale space.
Step 1. Construction of the coarse and fine meshes (TH and Th) and local domains (ωi)

Step 2. Spectral problem. For construction of the multiscale basis functions. we solve a local spectral problems in domain ωi for
displacement and pressure separately. The local spectral problems

Pressure Displacements
au(u, v) = λu, s

u(u, v), ap(p, q) = λps
p(p, q),

au(u, v) =
∫
ωi
σ(u)ε(v)dx, su =

∫
ωi

(λ+ µ)(u, v)dx, ap(p, q) =
∫
ωi
k grad p, grad q dx, sp =

∫
ωi

(kp, q)dx,

where v, q is a trial functions. A multiscale spaces Vh, Qh, we will form using eigenvectorsϕ1, ϕ2, ...ϕL,ψ1, ψ2, ...ψL corresponding
to the first smallest L eigenvalues, where λ1 ≤ λ2 ≤ ... ≤ λL.
We can write spectral problems in the matrix form

Pressure Displacements
Auϕ = λuS

uϕ, x ∈ ωi, Apψ = λpS
pψ, x ∈ ωi,

whereAu, Su matrices for displacements andAp, Sp for pressure.
In the fact that the spectral problem must be solved many times. Therefore, it is possible to reduce the dimension of the problem. The
method consists in solving the spectral problem only at the boundary nodes of the domain ωi. That is, we solve problems (1) in an-
other spaces, this spaces is called a snapshot space, denoted as Vsnap for displacement and Qsnap for pressure. To go into spaces
Vsnap, Qsnap, you need to obtain a transition matricesRu

snap, R
p
snap.

Pressure Displacements
Ru

snap = [ϕsnap
1 , ..., ϕsnap

Li
], Rp

snap = [ψsnap
1 , ..., ψsnap

Li
],

Next, we move to spaces Vsnap, Qsnap and obtain the following eigenvalue problem

Pressure Displacements
A

u
ϕ = λuS

u
ϕ, x ∈ Vsnap, A

p
ψ = λpS

p
ψ, x ∈ Qsnap.

Pressure Displacements
A

u
= Ru

snapA
u(Ru

snap)T , S
u

= Ru
snapS

u(Ru
snap)T ,

A
u

= Ru
snapA

u(Ru
snap)T , S

p
= Rp

snapS
p(Rp

snap)T .

where ϕj = (Ru
snap)Tϕ and ψj = (Rp

snap)Tψ. As a result of solving the spectral problem, we have obtained the bases that are used
to move from small scale to coarse. Bases can be different numbers, with the increase in the number of bases, the accuracy of the solution
will improve.
For obtaining conforming basis functions we use linear partition of unity functions.

Step 3. Assembling a matrices in a multiscale space
Next, we construct transition matrix R from a fine grid to a coarse grid and use it for reducing the dimension of the problem. The
transition matrix

R =

(
Ru

Rp

)
=



0 · · · B1x ∗ P1 · · · 0 · · · 0 · · · 0
0 · · · 0 · · · B1y ∗ P1 · · · 0 · · · 0
0 · · · 0 · · · 0 · · · B1p ∗ P1 · · · 0

...
...

. . .
...

. . .
...

. . .
...

...
0 · · · BLx ∗ P1 · · · 0 · · · 0 · · · 0
0 · · · 0 · · · BLy ∗ P1 · · · 0 · · · 0
0 · · · 0 · · · 0 · · · BLp ∗ P1 · · · 0

...
...

. . .
...

. . .
...

. . .
...

...
0 · · · BLx ∗ PNc · · · 0 · · · 0 · · · 0
0 · · · 0 · · · BLy ∗ PNc · · · 0 · · · 0
0 · · · 0 · · · 0 · · · BLp ∗ PNc · · · 0



,

where subindexes x, y, p denote the displacement in x, y directions and the pressure, respectively. Bj and Pi are multiscale basis func-
tions and linear partition of unity functions, j = 0...L, i = 0...3∗Nc,L is the number of bases,Nc is the number of vertices of a coarse
grid,Nf id the number of vertices of a fine grid. Thus, the dimension of the matrixR is equal to 3 ∗NcL× 3 ∗Nf .
Then the system of equations can be translated into a coarse grid

Acuc +Gcpc = Fc,

Dcuc + Bcpc = Yc,

whereAc = RuAfR
T
u ,Bc = RpBfR

T
p , Fc = RuFf , Yc = RpYf ,Gc = RuGfR

T
p ,Dc = RpDfR

T
u and

Afu =

∫
Ω

σ(u)ε(v)dx, Bfp =
1

M

∫
Ω

p

τ
qdx+

∫
Ω

(k grad p, grad q)dx,

Gfp =

∫
Ω

α grad(p) · v dx, Dfu = α

∫
Ω

div u

τ
qdx, Ff =

∫
Ω

fuvdx, Yf =

∫
Ω

fpqdx+

∫
∂Ω

p1qds

after obtaining of a coarse-scale solution, we can reconstruct fine-scale solition

ums = R
T
uuc, pms = R

T
p pc

As a result, we obtain a solution on a fine grid for the problem of poroelasticity.
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CONCLUSION
In this work, a Generalized Multiscale Finite Element Methods for the poroelasticity
problem in heterogeneous porous media is applied. For the numerical solution of the
arising coupled system of equations for pressure and displacements, an approximation
of the problem is constructed usingfinite element method with linear basis functions.
We show the errors relative with varying multiscale basis functions and distribution of
displacement alongX and Y direction and pressure at the final time.
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RESULTS
In this section, we present numerical examples to demonstrate the performance of the GMsFEM for computing the solution of the poroelasticity problem in heterogenous domains.
For the Biot modulus, we take M = 62500000 and set α = 1.0, the Poisson’s ratio is ν = 0.3. Permeability field and elastic modulus are shown in figure above. When solving of
poroelasticity problem the number of basis functions for displacement and pressure is the same. Time parameters: Tmax = 0.001 and dt = 0.0001.

Heterogeneous permeability and elasticity parameter E.

Numerical comparision of the solutions by choosing different numbers of multiscale
basis functions in GMsFEM.

Distribution of displacement for X and Y directions and pressure at the final time for

GMsFEM.

Distribution of displacement for X and Y directions and pressure at the final time on

fine grid.

MATHEMATICAL MODEL
We consider linear poroelasticity problem where we wish to find a pressure p and dis-
placements u satisfying

− div σ(u) + α grad(p) = fu(x, t), x ∈ Ω, 0 < t ≤ T, (1)

α
∂ div u

∂t
+

1

M

∂p

∂t
− div

(
k

v
grad p

)
= fp(x, t), x ∈ Ω, 0 < t ≤ T, (2)

Here the primary sources of the heterogeneities in the physical properties arise from
elasticity tensor in stress σ and permeability k. We denote M to be the Biot modulus, ν
is the fluid viscosity, σ is the linear stress, ε is the strain tensor and α is the Biot-Willis
fluid-solid coupling coefficient. σ and ε are given as

σ(u) = 2µε(u) + λ div(u)I,

ε(u) =
1

2
(gradu+ gradu

T
),

where µ, λ are Lame coefficients, I is the identity tensor. In the case where the media
has heterogeneous material properties the coefficients µ and λmay be highly variable.
The problem for the system of equations (1) - (2) is considered in a bounded domain Ω.
For displacements on the boundary ∂Ω = ΓD + ΓN we set

u = 0, x ∈ ΓD, −σn = 0, x ∈ ΓN , (3)

Where n is the unit normal to the boundary. Similarly, for pressure, we set Dirichlet and
Neuman boundary conditions

p = 0, x ∈ Γ3 ∪ Γ4 ∪ Γ5 (4)

At the initial time t, the following condition is given

ε(x, 0) = 0, p(x, 0) = p0, x ∈ Ω, (5)

for deformations and pressure.

Space approximation

For approximation by space, we use finite element method abd write the variational
formulation for equations (1) - (2) with the initial boundary conditions (3) - (5): find
u ∈ W, p ∈ V such that

a(u, v) + g(p, v) = l
u

(v), v ∈ W ′

d(u̇, q) + b(p, q) = l
p
(q), q ∈ V ′

.

Here the bilinear and linear forms are given as follows:

a(u, v) =

∫
Ω

σ(u)ε(v)dx, g(p, v) = α

∫
Ω

grad p vdx,

d(u̇, q) = α

∫
Ω

∂ div u

dt
qdx, c(p, q) =

1

M

∫
Ω

pqdx,

b(p, q) =

∫
Ω

(k grad p, grad q)dx,

l
u

(v) =

∫
Ω

fuvdx, l
p
(q) =

∫
Ω

fpqdx+

∫
∂Ω

p1qds.

Bilinear forms a(·, ·),b(·, ·) and c(·, ·) are symmetric and positively defined, d(v, v) =
−g(v, v) for v ∈ V, v ∈ W.
Approximation by time
For approximation by time, we use an implicit difference scheme∫

Ω

σ
e
(u

n+1
)ε(v)dx+ α

∫
Ω

grad p
n
vdx = fu(x, t)

α

∫
Ω

div(un+1 − un)

τ
qdx+

1

M

∫
Ω

p
n+1

qdx+

+

∫
Ω

(k grad p
n+1

, grad q)dx = fp(x, t),

where we use linear basis functions for pressure and for displacements.


